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ABSTRACT 
Credit risk, also known as default risk, is the likelihood of a corporation losing money if a business partner 

defaults. If the liabilities are not met under the terms of the contract, the firm may default, resulting in the loss of 

the company. There is no clear way to distinguish between organizations that will default and those that will not 

prior to default. We can only make probabilistic estimations of the risk of default at best. There are two types of 

credit risk default models in this regard: structural and reduced form models. Structural models are used to 

calculate the likelihood of a company defaulting based on its assets and liabilities. If the market worth of a 

company's assets is less than the debt it owes, it will default. Reduced form models often assume an external cause 

of default, such as a Poisson jump process, which is driven by a stochastic process. They model default as a 

random event with no regard for the balance sheet of the company. This paper provides a Review of credit risk 

default models. 

 

Keywords: Credit Risk, Default Models, Structural Models, Reduced-form Models, Poisson jump process. 

 

INTRODUCTION 
The uncertainty about a company's ability to service its debts and commitments is known as credit risk or default 

risk. It's the risk of a loss occurring as a result of a borrower's failure to repay a loan or meet contractual 

obligations. It refers to the likelihood of a corporation losing money if a business partner defaults. If the liabilities 

are not met under the terms of the contract, the firm may default, resulting in the loss of the company. Credit, 

commerce, and investment operations, as well as the payment system and trade settlement, all result in liabilities. 

Credit risk modelling is difficult due to the fact that company default is not a common occurrence and usually 

comes unexpectedly. However, when a creditor defaults, it frequently results in significant losses that cannot be 

predicted in advance, therefore effectively measuring and managing credit risk can reduce the severity of a loss 

(Mianková et al. 2014). Along with market risk and operational risk, credit risk is one of three key hazards that 

all financial markets must report and retain capital against. It shows the likelihood of the company losing money 

if a business partner fails. We can attribute this failure to a failure to meet contractual duties, which results in a 

company loss (Kollár 2014). According to Bielecki and Rutkowski (2004), Credit risk  has three components: (i) 

default risk, which is the risk that the issuer or counterparty will fail to honour the terms of the obligation stated 

in a financial contract; (ii) spread risk, which is the risk of loss or underperformance of an issue or issues due to 

an increase in the credit spread; and (iii) downgrade risk, which is the risk of credit ratings deterioration. 

 
DEFAULT MODELS 

Default models employ market data to model the occurrence of a default event. They are created by financial 

organisations to estimate the likelihood of a corporate or sovereign entity defaulting on its credit obligations. 

These models have evolved into two distinct types of models: structural and reduced form models (Elizalde, 2005). 

 

I. STRUCTURAL MODELS 

This is the first group of default models that look at the structure of the company's capital and are based on its 

value. Merton (1974) pioneered structural models, which use the Black-Scholes option pricing framework to 

characterise default behaviour. They're used to figure just how likely a company is to default based on the value 

of its assets and liabilities. They make the assumption that they have complete knowledge of a company's assets 

and liabilities, leading in a predicted default time. These models indicate that default risks arise when the value of 
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a company's assets falls below its outstanding debt at the maturity date (Saunders and Allen 2002). These models 

are designed to show a direct link between default risk and capital structure. The fundamental disadvantage of this 

strategy is that it ignores the market value of a company's assets and treats debt as an option on those assets, and 

the default event is predictable (Chatterjee, 2015). 

 

II. REDUCED FORM MODELS 

The reduced form models are the second type of default models. The relationship between default and firm value 

is not explicitly included in these models. Defaulting is viewed as an unanticipated occurrence that can be 

influenced by a variety of market circumstances. Reduced form models often assume an external cause of default, 

such as a Poisson jump process, which is driven by a stochastic process. They model default as a random event 

with no regard for the balance sheet of the company. A Poisson event is the term used to describe this type of 

random event. This technique to credit risk modelling is also known as default intensity modelling because 

Poisson models look at the arrival rate, or intensity, of a certain event. The probability or intensity of default, as 

well as the mean recovery rate, are calculated using reduced-form credit risk models, which employ the observed 

market credit spread (Acharya and Carpenter 2002). The Jarrow and Turnbull (1995) model, which uses multi-

factor and dynamic analysis of interest rates to compute the probability of default, is one of the first reduced-form 

models. 

 

LITERATURE REVIEW 
I. Structural models 

Merton (1974) calculated a company's credit risk by imagining its stock as a call option on its assets. Merton 

characterised a firm's asset value as a lognormal process and assumed that if the asset value fell below a specific 

default boundary, the firm would default. The default option was available only once, at maturity. The firm's 

equity was created via a call option on the underlying assets. The benefit of this model is that it can be used for 

any publicly listed company and that data from the stock market may be used instead of financial data. It can also 

be used to predict what will happen in the future. The use of this approach in everyday practise, on the other hand, 

highlighted some of its flaws. The model's credit spreads, which are premiums to risk-free interest rates, are 

typically lower than the real spreads. The assumptions of Merton's model scarcely resemble reality. Previous 

experience indicates that the company would struggle to pay its debts for a long time before the value of its assets 

falls below the value of its liabilities (Mianková 2015). Extensions to the Merton model can help to overcome 

some of the model's flaws. The most well-known and commonly utilised is Keaholfer, McQuown, and Vasicek 

(KMV), which was discovered in 1974 based on Merton's bond pricing model assumptions (Kliestik et al. 2015). 

 

The Merton model is based on the idea of considering a company's equity as a call option on its assets, allowing 

Black-Scholes option pricing methods to be used. Assume a corporation has an asset tA  at time t  financed by 

stock equity tE  and zero-coupon debt tD  with a face amount of K  maturing at time T t , and a capital 

structure determined by the balance sheet relationship: 

                                                                                  t t tA E D= +                                                                             (1) 

The company defaults on its debt at T if TA K . In the case TA K  the company’s debtholders can be paid 

the full amount K . Shareholders’ equity value is given by TA K− . Therefore, equity value at time T can be 

written as: 

                                                                ( )max ,0T TE A K= −                                                               (2) 

The asset value TA  is assumed to follow a geometric Brownian motion (GBM) process, with risk-neutral 

dynamics given by the stochastic differential equation: 

                                                                  
t

A t

t

dA
rdt dW

A
= +                                                                   (3) 

where tW  is a standard Brownian motion under risk-neutral measure, r denotes the continuously compounded 

risk-free interest rate, and A  is the asset’s return volatility. Applying the Black-Scholes formula for European 

call option we obtain: 

                                                       ( ) ( ) ( )1 2

r T t

t tE A N d Ke N d
− −

= −                                                      (4) 

where ( )N   denotes the ( )0,1N  cumulative distribution function, with the quantities 1d  and 2d  given by: 
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( )2

1

1
ln

2
,

t
A

A

A
r T t

K
d

T t





   
+ + −  
  =

−
                                                (5) 

                                                       

( )2

2

1
ln

2
.

t
A

A

A
r T t

K
d

T t





   
+ − −  
  =

−
                                                (6) 

The continuously compounded credit spread s is given by: 

                                                                 ( ) ( ) ( )2 1

1
ln

r T ttA
s N d e N d

T t K

− 
= − − − −  

                                       (7)  

Equation (7) allows us to solve for credit spread when asset level and return volatility ( tA  and A ) are available 

for given t, T, K, and r . To get tA  and A  we need to assume another geometric Brownian motion model for 

equity price tE  and applying Ito’s Lemma to show that instantaneous volatilities satisfy: 

                                                                     t
t A t E

t

E
A E

A
 


=


.                                                                 (8) 

Black-Scholes call option delta can then be substituted into (8) to obtain: 

                                                                  ( )1t A t EA N d E =                                                                  (9) 

where equity price tE  and its return volatility E  are observed from equity market. Finally, (4) and (8) can be 

solved simultaneously for tA  and A , which are used in (7) to determine credit spread s. 

 

By modelling the evolution of firm value as a jump-diffusion process, Zhou (1997) created a new structural 

approach to estimating credit risk and evaluating default-risky instruments. A firm can default instantly due to a 

quick reduction in its value in a jump-diffusion process. They also naturally linked recovery rates to firm valuation 

upon default, resulting in endogenous variance in recovery rates in the model. The findings suggested that both 

the diffusion and jump processes could be key components of a structural debt valuation model. They proposed 

that their paper's valuation framework be expanded to include more institutional elements such as floating rate 

coupon payments and bond indenture provisions that may require a firm to return its lenders recovered values at 

default time if the bond defaults before maturity. He built a continuous-time valuation framework for hazardous 

debt by extending the Merton-Black-Cox-Longstaff-Schwartz approach and modelling the evolution of firm's 

value as a jump-diffusion process. He came up with the model by making a list of assumptions. Some of them are 

similar to Merton's (1974), Black and Cox's (1976), and Longstaff and Schwartz's (1977) works (1995). 

1. Let V  denote the total market value of the assets of the firm. The dynamics of V  are given by the 

following jump-diffusion process: 

                                                                           ( ) ( )1 1dV V v dt dZ dY  = − + + −                                (1) 

where 

           , ,v   and   are positive constants 

           1Z  is a standard Brownian motion 

           dY  is a Poison process with intensity parameter   

           0  is the jump amplitude with expected value equal to 1v + , and  

           1,dZ dY  and   are mutually independent. 

v  equals the expected value of jump component ( )1− ,   represents the expected instantaneous rate of 

change of firm’s value. They assume that  is identically and independently distributed log-normal random 

variable, such that: 

                                                                                     ( ) ( )2ln N    +                                                        (2) 

Implying that 

                                                                               ( )2: 1 exp 2 1v E   − = + −  
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The diffusion process (1) describes the natural variation in a firm's value that occurs as a result of gradual changes 

in economic conditions or the receipt of new knowledge, resulting in marginal changes in the firm's value. The 

jump component reflects the abrupt changes in a firm's value as a result of critical new information that has a 

significant impact on the firm's market value. A jump-diffusion process for a firm's value seems ideal for 

simulating a firm's default risk, given that a firm's value moves virtually continuously most of the time and that 

the market value of a firm can decrease drastically in the case of a default. 

2. The capital asset pricing model (CAPM) holds for equilibrium security returns and the jump component 

of firm’s value equation (1) is purely firm-specific and is uncorrelated with the market. 

3. The Modigliani-Miller theorem that the value of the firm is invariant to its capital structure holds. The 

changes in capital structure, such as debt equity  ratio and payments of coupons and principle, do not affect the 

firm’s value V . 

4. They assume perfect, frictionless markets in which securities trade in continuous time. Arbitrage 

opportunities do not exist. 

5. There exists a positive threshold value K  for the firm at which financial distress occurs. The firm 

continuous to operate and to be able to meet its contractual obligations as long as V K . However, if its value 

V  falls to or below the threshold level K , it defaults on all of its obligations immediately and some form of 

corporate restructuring takes place. 

6. The firm issues both equity and debt (bonds). If it defaults during the life of a bond, the bond holder 

receives ( )1 sw X−  times the face value of the security at maturity T . Here ( )min ,s T=  with   being the 

time of default and :X V K=  is the ratio of the firm’s value V  to the threshold level K . w  is usually a non-

increasing function of X , that is the inequality ( )/ 0w X   holds. The factor w represents the percentage write-

down on a bond if there is a reorganization of the firm. When 0w = , there is no write-down and bondholders 

are not affected by the firm’s reorganization. When 1w = , bondholders receive nothing in a reorganization. In 

general, w differs across various bond issues in the firm’s structure, it is a bond specific. 

7. The short-term risk-free interest rate r  is constant over time. 

 

Assumption (1) and the definition that X V K=  yield immediately: 

 

                                                              ( ) ( )1 1dX X v dt dZ dY  = − + + −                                            (3) 

 

Let H  be the price of any derivative security with payoff at time T  contingent on the firm’s X . Using Merton’s 

(1976) result, the assumption that the jump risk is not systematic and that arbitrage opportunities are excluded, 

the derived price H  must satisfy the following partial differential equation: 

 

                                 ( ) ( ) ( )2 21
, ,

2
XX X t TX H r v XH rH E H X T H X T H  + − − +  − =                

(4) 

 

Equation (4) does not depend on either the risk-aversion coefficient or the physical drift of the firm’s X , as 

expected from standard no-arbitrage approach for pricing derivative securities. The value of any derivative 

security can be obtained by solving the equation subject to appropriate boundary conditions. 

 

Crosbie and Bohn (2003), Kealhofer (2003), and Vasicek (1984) devised the MKMV technique, which uses the 

Vasicek-Kealhofer (VK) model to offer a term-structure of physical default risk probability. This model considers 

equity to be a perpetual down-and-out option on a company's fundamental assets. Short-term obligations, long-

term liabilities, convertible debt, preferred equity, and common equity are among the five categories of liabilities 

that can be accommodated under this model. MKMV derives a firm's market value of assets and associated asset 

volatility using the option-pricing equations derived in the VK framework. Empirically, the default point term-

structure is determined. MKMV creates a Distance-to-Default (DD) term-structure by combining market asset 

value, asset volatility, and the default point term-structure. Using an empirical mapping between DD and historical 

default data, this term structure is transformed to a physical default probability. 
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21
log

2T

T

A
T

X
DD

T

 



   
+ −  
  =                                                  (1) 

The interpretation of TX  in the VK model differs slightly from that of the Merton model. If asset value A  falls 

below TX  at any point in time during the analytical stage of the model, the firm is regarded to be in default. The 

VK model estimates a term-structure of this default barrier in the DD-to-EDF empirical mapping step, resulting 

in a DD term structure that may be transferred to a default-probability term-structure, hence the subscript T for 

default barrier X . According to Huang (2003), the default probability created by the MKMV implementation of 

the VK model is known as the Expected Default Frequency or EDF credit measure. After obtaining the EDF term 

structure, a cumulative EDF term structure up to any term T  referenced to as TCEDF  can be calculated. This 

is then converted to a risk-neutral cumulative default probability TCQDF  using the following equation: 

                                                           ( ) ( )1 2

T TCQDF N N CEDF sqrt R sqrt T− = +  
 

                         (2) 

 

where  is the square of correlation between the underlying asset returns and the market index returns, and  

is the market Sharpe ratio. The spread of a zero-coupon bond is obtained as: 

 

                                                                                
1

log 1 Ts LGD CQDF
T

= − −                                               (3) 

where LGD stands for the loss given default in a risk-neutral framework. The floating leg of a simple CDS (i.e. a 

single payment of LGD paid out at the end of the contract with a probability of TCQDF  ) can also be 

approximated with this relationship. 

Jarrow et al. (2003) conducted a robust test of Merton's structural credit risk model that did not rely on either 

estimated firm value parameters or projected default probabilities. They also used the Merton model to provide a 

test for the consistency of observed changes in debt and equity prices (positive or negative changes). The data 

significantly refuted Merton's structural model for all enterprises studied and for all debt difficulties considered. 

Only the monitoring of equity prices, debt prices, and the spot rate of interest was required for their testing 

approach. Over the period of February 6, 1992, to March 12, 2001, they tested the Merton model on five distinct 

companies' debt concerns in various sub-intervals, using both weekly and monthly observation intervals. 

However, because they did not look into the consequences of its extensions and generalizations, their testing 

methods may be used to look into these as well. They emphasized that Merton's model presupposes complete 

markets that are frictionless, competitive, and arbitrage-free, and that the firm's balance sheet can be stated as: 

 

                                                                              ( ),t t tV D T F E= +                                                                     (1) 

 

where tV  is the value of the firm’s assets at time t assumed to follow a diffusion process, tD  is the value of the 

firm’s debt at time t, and tE  is the value of the firm’s equity at time t. The debt is assumed to be a zero-coupon 

bond with maturity T and face value F. Let tr  denote the (default free) spot rate of interest at time t, assumed to 

be non-random. Using the call option analogy to the firm’s equity, Merton (1974) develops a pricing formula for 

debt ( ), : ,t t t tD D V r T F=  that depends on the firm’s value (and the parameters of its stochastic process, the 

volatility), the characteristics of the debt (face value and maturity date), and the spot rate of interest ( tr ). Let 

t t tdV V dt dW = +  with tW a standard Brownian motion. Then, 

                                                         ( ) ( )1 2

T

u
t

r du

t tD V N h Fe N h
−= +                                                     (2) 

where 

2R 

http://vidyajournal.org/


 
 
 

Peer-Reviewed, Multidisciplinary & Multilingual Journal 

ISSN: 2321-1520 E-ISSN: 2583-3537 

Volume 1 Issue 2  

December 2022 
       2022 Vidya – A Journal of Gujarat University 

Page  6 

h
tt

p
:/

/v
id

y
aj

o
u
rn

al
.o

rg
 

                                                           

( )

( )

2

1

1
ln

2

T

u
t

r du

tFe V T t

h
T t





−  − − 
 =

−
                                         (3) 

                                                                    ( )2 1h h T t= − −                                                                 (4) 

( )N   is the cumulative standard normal distribution function.  

 

Using Merton's model, Hull et al. (2004) investigated credit risk and volatility skews. They suggested a method 

for estimating the model's parameters using implied volatilities of stock options. They compared their 

implementation of Merton's model against the standard way to implementation using data from the credit default 

swap market. Their proposed Merton model implementation outperformed the approach's standard 

implementation. 

 

Elizalde (2005) examined the structural approach to credit risk modelling, taking into account both the situation 

of a single firm and the scenario of firms with default dependencies. They looked at the Merton (1974) model and 

the first passage models (FPM) (Black and Cox 1976) in the single company situation, assessing its main 

properties and extensions. Finally, structural models with state-dependent cash flows or debt coupons were 

examined. They discovered that, according to Merton's model, a company fails if its assets are less than its 

outstanding debt at the time of debt servicing. Defaults in the FPM technique occur when a firm's asset value falls 

below a specified threshold. Unlike Merton's approach, default can happen at any time. FPM defines default as 

the first time a firm's asset value falls below a certain threshold, allowing default to occur at any time. SDMs 

presume that some of the characteristics affecting a firm's ability to generate cash flows or its funding costs are 

state dependent, with states representing the economic cycle or the firm's external rating. The empirical testing of 

FPM and structural models in general, on the other hand, has not been very fruitful. They agree that structural 

bond pricing models do not effectively price corporate bonds, based on estimations from implementations, 

because they present the predictability of defaults and recovery rates, which is not true in real market conditions. 

 

In the Black-Scholes-Merton paradigm, Kulkarni et al. (2005) modelled default probabilities and credit spreads 

for selected Indian enterprises. Over the sample period, they found that the objective probability estimates are 

greater than the risk-neutral estimates. The model's output performed well when compared to the Altman Z-score 

measure. The model, however, did not produce spreads as wide as those seen in the corporate bond market. 

 

Tarashev (2005) compared the probability of default (PDs) generated by six structural credit risk models to ex 

post default rates to assess their performance experimentally. The paper uses firm-level data, in contrast to other 

studies seeking similar goals, and demonstrates that theory-based PDs tend to closely match the actual level of 

credit risk and explain for its time path. Simultaneously, non-modeled macro variables from the financial and real 

sides of the economy aid in significantly improving default rate estimates. he findings show that theory-based PDs 

do not adequately reflect credit risk's reliance on business and credit cycles. The majority of the optimistic 

conclusions about PD performance are attributed to models with endogenous default. Exogenous default 

frameworks, on the other hand, have a tendency to underestimate credit risk. 

 

Using term structure of credit default swap (CDS) spreads and stock volatility from high-frequency return data, 

Huang and Zhou (2008) investigated specification analysis of structural credit risk models. Based on the 

simultaneous behavior of time-series asset dynamics and cross-sectional pricing errors, they provide consistent 

econometric estimate of pricing model parameters and specification tests. The conventional Merton (1974) model, 

the Black and Cox (1976) barrier model, and the Longstaff and Schwartz (1995) model with stochastic interest 

rates are all significantly rejected by their empirical testing. The double exponential jump-diffusion barrier model 

(Huang and Huang, 2003) outperforms the other two models significantly. The stationary leverage model of 

Collin-Dufresne and Goldstein (2001), which we cannot reject in more than half of our sample firms, is the best 

of the five models studied. However, empirical data show that conventional structural models, particularly for 

investment grade names, are unable to represent the dynamic behavior of CDS spreads and equity volatility. Given 

that equity volatility in structural models is time-varying, this finding provides direct evidence that using a 

structural model with stochastic asset volatility (as in Huang and Huang, 2003; Huang, 2005; Zhang, Zhou, and 

Zhu, 2009) can significantly improve model performance, particularly for investment-grade names. This suggests 

that time-varying asset volatility, which is not included in typical structural models, could play a role. Although 

these five models have different economic assumptions, they can all be integrated in the same underlying structure 

that comprises asset process, default boundary, and recovery rate requirements for the underlying company. 
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Let V be the firm's asset process, K the default boundary, and r the default-free interest rate process. Assume that, 

under a risk-neutral measure, 

                                      ( ) ( )
1

1

Q
tN

Q Q Q Qt
t v t i

it

dV
r dt dW d Z dt

V
   

=−

 
= − + + − − 

  
                            (1) 

                                                   ( ) ( )ln lnt t t td K Kl V r K V dt = − − − −                                    (2) 

                                                          ( ) Q

t t r tdr r dt dZ  = − +                                                             (3) 

where , , , , , , ,v rKl V      and   = are constants, and 
QW  and 

QZ  are both one- dimensional 

standard Brownian motion under the risk-neutral measure and are assumed to have a constant correlation 

coefficient of  . In Eq. (1), the process 
QN  is a Poisson process with a constant intensity 0Q  ¸ the 

Q

iZ  's 

are . .i i d  random variables, and ( )1lnQ QY Z  has a double-exponential distribution with a density given by: 

                                                       ( )    0 0
1 1

QQ
u d

Q

yyQ Q Q Q

u u d dy yY
f y p e p e

 
−−

 
= +                                (4) 

In equation (4), parameters , 0Q Q

u d    and , 0Q Q

u dp p   are all constants, with 1Q Q

u dp p+ = .The mean 

percentage jump size 
Q  is given by: 

                                      1 1
1 1

Q
Q Q Q Q

Q Q Y u u d d

Q Q

u d

p p
E e

 


 
 = − = + −
  − +

                                                        (5) 

All five models considered in this analysis are special cases of the general specification in Eqs. (1) - (3). For 

instance, if the jump intensity is zero, then the asset process is a geometric Brownian motion. If both  and r  

are zero, then the interest rate is constant, an assumption made in the three one-factor models. They assume a 

constant recovery rate for comparison with other studies and because the CDS database that they used includes 

the recovery rate estimates. Under each of the five structural models, it is straightforward to calculate the CDS 

spread. Let ( )0,Q T  denote the survival probability over ( 0,T under the T -forward measure. Then the CDS 

spread of a T-year CDS contract is given by: 

                                    ( )
( ) ( )( )  

( ) ( )

0

4

1

1 exp

0,
0, 0, 4

T
Q

T

T

i ii

R E r u du I

cds T
D T Q T

 

=

 − −
  =




                                      (6) 

where R is the recovery, r is the interest rate process, ( )0,D   the default-free discount function,   the default 

time, and 
I


the indicator function, and  QE  the expectation under the risk-neutral measure. To simplify the 

computation, they followed the literature to make the standard assumption that the settlement of the contract 

occurs on the next payment day. It then follows from Eq. (6) that: 

                             ( )
( ) ( ) ( ) ( )

( ) ( )

4

11

4

1

1 0, 0, 0,
0,

0, 0, 4

T

i i ii

T

i ii

R D T Q T Q T
cds T

D T Q T

−=

=

− −  
=




                                 (7) 

As a result, the implementation of a structural model amounts to the calculation of the survival probability ( )0,Q 

. In the Merton (1974) and the Black and Cox (1976) models, ( )0,Q  has closed form solutions. The survival 

probability in the double exponential jump diffusion model and the two-factor models do not have a known closed 

form solution but can be easily calculated using a numerical method. 

 

Schaefer and Strebulaev (2008) investigated the impact of structural credit risk models on corporate bond hedging 

ratios. They demonstrated that, whereas structural credit risk models are poor predictors of bond prices, they are 

highly accurate predictors of corporate bond returns' sensitivity to changes in the value of stock (hedge ratios). 

This is significant because it implies that structural models' poor performance may be due to the influence of non-

credit factors rather than a failure to reflect the credit exposure of corporate debt. The key finding of their study 

is that even the most basic structural model for corporate debt pricing developed by Merton (1974): the risk 
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structure of interest rates, produces hedging ratios that are not rejected in time-series tests. They discover, 

however, that the Merton model, with or without stochastic interest rates, fails to explain why corporate bonds' 

interest rate sensitivity is so low. 

 

Wang (2009) gave an overview of a regularly used structural credit risk modelling approach that the actuarial 

community is less aware with. He emphasized that the Merton model is based on the idea of treating a company's 

equity as a call option on its assets, allowing Black-Scholes option pricing methods to be used. Credit spread, 

according to Merton's model, compensates for credit risk, which is linked to structural determinants (assets, 

liabilities, etc.). However, empirical evidence suggests that the Merton model undervalues credit spreads, 

especially short-term spreads for high-quality debtors. This flaw has lately been addressed by a number of 

expanded models, including studies by Black and Cox (1976). 

 

Existing structural models, according to Davydenko (2012), negate liquidity issues as the primary predictors of 

default for some enterprises, notably those with significant external funding costs. He emphasized that if external 

financing are too expensive, a liquidity crisis may require rearrangement, even though the going-concern surplus 

remains significant. According to empirical evidence, structural models need to be theoretically extended to 

include the risk of enterprises defaulting due to liquidity shortages and high funding costs.  

 

The Merton model was used by Valáková and Klietik (2014) to analyze credit risk. The possibility of debtor 

default or the difference between the value of the company assets and the default barrier expressed as a number 

of standard deviations is how the model depicts credit risk. They discovered that default happens in the Merton 

model when the market value of the company's assets is less than the book value of its obligations. All relevant 

information about the company's risk profile is included in accounting and market pricing of securities issued by 

the company, which is a major prerequisite of the technique based on market data analysis. 

 

Hoang and Vuong (2015) used the Merton model to construct a framework for measuring credit risk with jumps. 

They studied a Merton model for default risk, in which a Brownian motion and a compound Poisson process drive 

the firm's value. The findings revealed that the firm's worth can fluctuate at random, not only in a continuous but 

also cumulatively discrete manner. 

 

II.  Reduced form models 

Chen and Panjer (2002) used a jump-diffusion process to represent firm value evolution, where the instantaneous 

percentage of change in firm value is made up of the change from a systematic diffusion process plus the change 

from a nonsystematic leap. They presume that the credit spread must be consistent with the market spread, unlike 

typical structural models that have distinct credit spreads from market spreads. Because the diffusion process 

evolves at a riskless rate, their research determines the implied jump distribution using the market credit spread. 

According to their findings, their proposed model establishes an intensity process, allowing a structural model 

and a reduced-form model to be merged. Their research developed an exponential-lognormal jump-diffusion 

process, which produced a distributed recovery that is consistent with the market experience.  

 

Hull and White (2000) developed a methodology for valuing credit default swaps when the payoff is contingent 

on default by a single reference entity and there is no counterparty default risk. Instead of using a hazard rate for 

the default probability, this model incorporates a default density concept, which is the unconditional cumulative 

default probability within one period no matter what happens in other periods. By assuming an expected recovery 

rate, the model generates default densities recursively based on a set of zero-coupon corporate bond prices and a 

set of zero-coupon Treasury bond prices. Then the default density term-structure is used to calculate the premium 

of a credit default swap contract. The two sets of zero-coupon bond prices can be bootstrapped from corporate 

coupon bond prices and treasury coupon bond prices. They show the credit default swap (CDS) spread s to be: 

                                                               
( )( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

1 1
T

T

R A t q t v t dt
s

q t u t e t dt u t

 − +
 =

+ +  




                                                   (1) 

where: 

 T : the life of the CDS contract. 

           ( )q t : the risk-neutral default probability density at time t . 

         ( )A t : the ac crued interest on the reference obligation at time t  as a percent of face value. 

              : the risk-neutral probability of no credit event over the life of the CDS contract. 
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            w : the total payments per year made by the protection buyer. 

        ( )e t : the present value of the accrued payment from previous payment date to current date. 

        ( )u t : the present value of the payments at time t at rate of $1 on the payment dates. 

          R : the expected recovery rate on the reference obligation in a risk-neutral world. 

 

The risk-neutral default probability density is obtained from the bond data using the relationship: 

                                                                

1

1

j

j j i iji
j

jj

G B q
q





−

=
− −

=


                                                       (2) 

where ij  is the present value of the loss on a defaultable bond j relative to an equivalent default-free bond at 

time it . ij can be described as: 

                                                       ( ) ( ) ( ) ( )ij i j i j i j iv t F t R t C t  = −                                                 (3) 

jC  is the claim made on the jth bond in the event of default at time it , while jR  is the recovery rate on that 

claim. jF  is the risk-free value of an equivalent default-free bond at time it , while ( )iv t  is the present value of 

a sure payment of $1 at time it . Under this framework, one can infer a risk-neutral default risk density from a 

cross-section of bonds with various maturities. As long as the bonds measure the inherent credit risk and have the 

same recovery as used in the CDS, one should be able to recover a fair price for the CDS based on the prices of 

the obligors traded bonds. 

 

A specification analysis of reduced-form credit risk models was undertaken by Berndt (2007). They evaluated 

numerous one-factor reduced-form credit risk models for actual default intensities using non-parametric 

specification tests devised by Hong and Li (2005). They used Moody's KMV estimations for actual default 

probabilities for 106 U.S. enterprises in seven industrial groups from 1994 to 2005 (Bohn et al. 2005 and Crosbie 

and Bohn 2003). Popular univariate affine model specifications were sharply rejected by the results. They 

hypothesized that the logarithm of the real default intensity follows an Ornstein-Uhlenbeck process, known as the 

Black-Karasinski (BK) model, for goodness-of-fit and model simplicity (1991). They discovered significant 

mean-reversion in actual log-default intensities for the BK model specification, with an average half-time of 

around 18 months. Findings also indicated the level of pairwise correlation in log-default intensities differed 

across industries. 

 

The reduced form modelling approach for credit risk was provided by Jeanblanc and Lecam (2008) in a unified 

setting. A credit event was depicted as an inaccessible random time. They proposed two techniques to modelling 

default: the intensity-based approach, which is efficient when working with Cox process construction since the 

default time is generated from the intensity, and the hazard process approach, which gives the default time. The 

results demonstrated that knowing the intensity is not required to price contingent claims using the first method. 

The last method is particularly suited to studying models with incomplete observations, which is a method of 

studying a model where the default has an economic value (as in structural models) and when the default is 

unpredictable, giving nice spreads. 

 

In a reduced form model of default spreads with Markov-switching macroeconomic factors, Dionne et al. (2011) 

investigated the ability of observed macroeconomic indicators and the probability of regime shifts to explain the 

proportion of yield spreads induced by the risk of default. They applied Bansal and Zhou's (2002) Markov-

switching risk-free term structure model to corporate bonds, developing recursive formulas for default probability, 

risk-free and risky zero-coupon bond yields, and credit default swap premia. They used consumption, inflation, 

risk-free returns, and default data for Aa, A, and Baa bonds from 1987 to 2008 to calibrate their model. 

Macroeconomic factors were associated to two out of three dramatic spikes in default spreads during this sample 

period, according to the researchers. Both inflation and consumption growth were adversely associated to default 

spreads during these recessions, demonstrating that spread variations can be linked to macroeconomic 

undiversifiable risk. They also mentioned that the bond market's illiquidity is most likely the key reason for the 

discrepancy in default and credit spreads. They proposed two additions to their research: (i) taking into account 

alternative macro factors that are more closely linked to economic recessions than consumption, and (ii) explicitly 

including liquidity risk in the model. 
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Liang and Wang (2012) proposed a reduced form credit risk model in which common shocks with regime-

switching describe the default dependence structures among default intensity processes. They also came up with 

some closed-form formulations for the joint distribution of default timings and the basket default swap pricing 

formulas. They used correlated relations to depict the default dependence structure among the default intensity 

processes in their model. 

 

Su and Wang (2012) used a reduced form model to analyze the valuation of European options with credit risk. 

They assumed that the interest rate follows the Vasicek model, and that the default intensity is determined by a 

jump diffusion process. They were able to establish the closed form formula for the option price. They then 

calculated the value of the vulnerable European call option by altering the probability measures. Finally, they 

calculated the effects of the recovery rate, correlation coefficients, and Poisson intensity on the option price using 

numerical analysis. 

 

III.  Comparison of Structural models and Reduced form models 

Using a jump-diffusion technique, Chen and Panjer (2003) combined discrete structural models and reduced-form 

models in credit risk. They calculated the default probability and mean recovery rate by combining the market 

spread and the firm's capital structure. They used the credit spread to find the implied jump distribution. They 

demonstrated that credit spreads in the structural and reduced-form models are equivalent. The default probability 

and mean recovery rate were calculated using the market spread in the reduced-form model, whereas the default 

probability and mean recovery rate were calculated using the capital structure in the structural model. The degree 

of freedom is raised by adding a jump process to the diffusion process, but it is lowered by the market spread, 

according to the results. The credit spread difference between the structural model and the reduced-form model 

was eliminated by using the market spread to calculate the implied jump distribution, and the structural model and 

the reduced-form model may now be unified when the default can only occur at maturity. However, there is no 

mechanism for determining the jump distribution. The default probability (or intensity of default) and mean 

recovery rate are calculated from the market spread using model-specific assumptions in a reduced-form model, 

although the capital structure that triggers the default is rarely used. 

 

From an information-based perspective, Jarrow and Protter (2004) evaluated structural vs reduced form credit risk 

models. Structural models presume that the modeler has access to the same data set as the business manager, 

which includes a thorough understanding of the firm's assets and liabilities. In the vast majority of cases, this 

knowledge results in a predictable default time. Reduced form models, on the other hand, presume that the modeler 

has the same set of data as the market's inadequate understanding of the firm's status. In the majority of 

circumstances, this incomplete knowledge results in an unavailable default time, as a result, they claim that the 

main contrast between structural and reduced form models is whether the information set is observed by the market 

or not, not whether the default time is predictable or inaccessible. They recommended reduced form models as 

the preferred methodology for pricing and hedging because they were built specifically to be based on the 

information available to the market. 

 

Two structural models of credit risk (basic Merton and Vasicek-Kealhofer (VK)) and one reduced-form model 

(Hull and White 2003) were empirically compared by Arora et al. (2005). Default discrimination and relative 

value analysis are two useful reasons for credit models, according to them. They looked at how well the Merton 

and VK models could distinguish defaulters from non-defaulters using default probability derived from equities 

market data. They examined the HW model's ability to distinguish defaulters from non-defaulters using default 

probability derived from bond market data. They discovered that the VK and HW models outperform the simple 

Merton model on both the complete sample and relevant sub-samples, with comparable accuracy ratios. They also 

assessed each model's ability to anticipate spreads in the credit default swap (CDS) market as a measure of its 

relative value analysis capability. Except in circumstances where an issuer has a large number of bonds in the 

market, they discovered that the VK model performs better throughout the entire sample and relative sub-samples. 

In this scenario, the HW model is the most effective. On the structural side, a simple Merton model proved 

insufficient; proper framework adjustments were required to create the difference. The quality and quantity of 

data made a difference on the reduced-form side. 

 

Jarrow (2009) examined the structural and reduced form credit risk models utilized in financial economics. They 

claimed that reduced form models, rather than structural models, should be used to price and hedge credit-risky 

instruments because structural models are static and do not represent the dynamic structure of credit risk. The 

sophistication of default contagion models, as well as the estimating processes used, must be increased to avoid a 

repeat performance. This enhancement will necessitate extensive study to identify dynamic models that represent 

default contagion while having parameters that can be estimated and values that can be computed. These include 
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stochastic recovery rate models, which are needed to better represent the dynamic nature of default losses and the 

reliance of credit and liquidity risk, which is crucial for valuation, hedging, and capital determination. 

 

Jarrow (2011) explored the theory and evidence of credit market equilibrium. The structural and reduced form 

models were reviewed as alternative paradigms for estimating credit risk. Their discussion was based on their 

understanding of credit market equilibrium. They demonstrated that in the borrowing and lending relationship, 

credit markets include asymmetric information, which influences equilibrium prices. Asymmetric equilibrium 

models are consistent with reduced form models, while structural models are not. Structural models should not be 

used for pricing, hedging, or risk management, as a result. 

 

Mianková et al. (2015) calculated credit risk using reduced form models based on credit spreads and calculated 

the chance of default. Reduced-form models employ credit spreads as an input for calculating the probability of 

default, as opposed to structural models, which try to explain credit spreads through structural characteristics. 

They calibrated their model using observable market data, which is one of the most appealing aspects of this 

technique, and this flexibility is a significant benefit of these models. The results reveal that in these models, the 

structural characteristics of the company are insufficient to explain credit default swap (CDS) spreads, and 

empirical evidence shows that systematic risk has a significant impact on credit default swap prices (CDS). CDS 

pricing, on the other hand, which are derived using structural models, frequently overreact to increasing market 

volatility. 

 

Table 1. Evolution of credit risk models 

Main models Related empirical 

studies 

Treatment of default event 

Structural 

models 

Merton(1974), 

Merton(1976), Zhou 

(1997), Bohn et al. 

(2005), 

Jarrow et al. (2003), 

Hull et al. (2004), 

Elzade (2005), Black 

and Cox(1976), 

Kulkami et al. (2005), 

Tarashev (2005),  

Huang (2005), Zhang, 

Zhou and 

Zhu (2006), Huang 

and Zhou (2008),  

Huang and Huang 

(2003), Schaefer and 

Strebulaev 

(2008),Wang (2009),  

Davydenko (2012), 

Valášková and  

Klieštik (2014), 

Hoang and Vuong 

(2015), 

Longstaff and 

Schwartz (1995),  

Mišanková (2015), 

Saunders and Allen 

2002, 

(Chatterjee, 2015) 

-Aim to provide an explicit relationship between default risk and 

capital structure 

-Based on the value of the company 

-Examine the structure of the capital of the company 

-Endogenously specify default event and recovery rates 

-Calculate the probability of default of a firm based on the value of 

assets and liabilities 

-Assume complete knowledge of a company’s assets and liabilities 

resulting in a predictable default event and recovery rates 

-Assume default risk occur at the maturity date if at that stage, the 

value of a company’s assets fall below a debt threshold 

-Don’t observe the market value of a firm’s assets 

-Consider company’s debt as an option on company’s assets 

-Model a firm’s asset value as a lognormal process 

Reduced-

form models 

Acharya and 

Carpenter 

(2002),Jarrow and 

Turnbull (1995), 

Chen and Panjer 

(2002),  

-They don’t consider the relation between default and firm’s value in 

an explicit manner 

-Treat default as unexpected event 

-They assume an exogenous cause of default driven by a stochastic 

process (Poison jump process) 

-They model default as a random event without any focus on the 

firm’s balance sheet 
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Berndt (2007), Hong 

and Li (2005),  

Jeanblanc and Lecam 

(2008), 

Dionne et al. (2011),  

Crosbie and Bohn 

(2003),Black and  

Karasinski (1991), 

Bansal and Zhou 

(2002), 

Liang and Wang 

(2012), Su and Wang 

(2012), 

-Describe a random event of default as a Poison event (default 

intensity modeling) 

-Use market observed market credit spread to obtain the probability 

(intensity) of default and recovery rates 

-These models lack economic insights about occurrence of defaults 

Comparison 

of  

Structural 

models and  

Reduced 

form  

models 

Arora et al. (2005), 

Hull and White 

(2002), 

Jarrow (2009), Jarrow 

(2011),  

Mišanková et al. 

(2015) 

Because structural models are static in character and do not represent 

the dynamic structure of credit risk, the literature argues that reduced 

form models, not structural models, are ideal for the pricing and 

hedging of credit-risky instruments. Structural models, with minor 

adjustments, can be effective in the pricing and hedging of credit 

securities. 

 

CONCLUSION AND SUGGESTION FOR FUTURE RESEARCH 
We have evaluated studies on default models' approach to credit risk in this paper. We looked at research on 

structural models, reduced form models, and comparisons between the two methods. Default models, in general, 

focus on the modelling of default events using market data. These models have evolved through time into two 

distinct types: structural and reduced form models. Credit risk is linked to underlying structural factors in structural 

models, which is a very appealing aspect. They allow for the use of option pricing methodologies and provide 

both an understandable economic interpretation and an endogenous explanation of credit defaults. As a result, 

structural models can help with not just asset value but also financial structure selection. The fundamental 

disadvantage of structural models is their complexity in implementation and the predictability of defaults and 

recovery rates, which is contradictory to market reality. Reduced form models calculate the likelihood (or 

intensity) of default as well as the mean recovery rate using the observed market credit spread. They specify 

recovery rates exogenously. These models suffer from a lack of economic insights into default occurrence; yet, 

they provide more functional form selection freedom. The analytical tractability, as well as the ease of 

implementation and calibration, are aided by this flexibility (compared to structural models). Reduced form 

models, on the other hand, may have high in-sample fitting features but limited out-of-sample prediction power 

due to their reliance on past data.  Because structural models are static in nature and do not represent the dynamic 

structure of credit risk, empirical data suggests that reduced form models, not structural models, are ideal for the 

pricing and hedging of credit-risky instruments. It is necessary to make improvements to the estimating processes 

employed in structural models. This enhancement will necessitate extensive study to identify dynamic models that 

represent default contagion while having parameters that can be estimated and values that can be computed. These 

include stochastic recovery rate models to better represent the dynamic nature of default losses, as well as credit 

risk reliance and the incorporation of liquidity risk for valuation, hedging, and capital determination. 
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