WHEN ESSENTIAL TURNS EXCESSIVE: THE EMERGING ROLE OF FUNGI FOR BIOREMEDIATION OF ZINC AN ESSENTIAL YET TOXIC SOIL ELEMENT
DOI:
https://doi.org/10.47413/26vczq60Abstract
Zinc (Zn) contamination in soil, resulting from industrial discharges, mining activities, and the overuse of agrochemicals, poses serious environmental and ecological threats. Although Zn is an essential micronutrient, its excessive accumulation in soil can lead to phytotoxicity, reduced crop productivity, disruption of soil microbial communities, and bioaccumulation in the food chain, ultimately affecting human and animal health. Therefore, effective remediation of Zn-contaminated soils is crucial for environmental sustainability, food security, and ecosystem health. In recent years, fungi have emerged as promising bioremediation agents due to their high metal-binding efficiency, adaptability to extreme conditions, and ability to transform toxic metals into less harmful forms. This review explores the multifaceted mechanisms of fungal-mediated Zn remediation, including surface adsorption via functional groups on the fungal cell wall, intracellular sequestration through metal-binding proteins like metallothioneins, and biomineralization through enzymatic activity. Critical factors influencing Zn uptake—such as pH, temperature, biomass dosage, and metal ion concentration are discussed. Recent advances highlight the potential of strains like Aspergillus terreus SJP02 and white-rot fungi (Phanerochaete chrysosporium, Trametes versicolor), achieving Zn biosorption capacities of up to 70 mg/g under optimal conditions. Despite its promise, fungal bioremediation faces challenges related to environmental variability, presence of co-contaminants, and scale-up feasibility. However, ongoing research in fungal genomics, metabolic engineering, and the development of fungal consortia offers new opportunities to enhance the efficiency and field applicability of this eco-friendly, cost-effective remediation strategy. A deeper understanding of fungal biosorption mechanisms will play a pivotal role in advancing sustainable solutions for heavy metal-contaminated environments.
References
1. Abo Elsoud, M.M., El Kady, E.M. Current trends in fungal biosynthesis of chitin and chitosan. Bull Natl Res Cent 43, 59 (2019). https://doi.org/10.1186/s42269-019-0105-y DOI: https://doi.org/10.1186/s42269-019-0105-y
2. Adriano, D. C. (2001). Trace elements in terrestrial environments: Biogeochemistry, bioavailability, and risks of metals (2nd ed.). New York: Springer. Agbenin, J. O., & Welp, G. (2012).
3. Agency for Toxic Substances and Disease Registry (ATSDR) (2005) Toxicological profile for Zn (Update). U.S. Department of Public Health and Human Services, Public Health Service, Atlanta.
4. Agorboude L, Navia R (2009) HMs retention capacity of a non-conventional Sorbent developed from a mixture of industrial and agricultural wastes. J Hazard Mater. doi:10.1016/j.jhazmat.2009.01.027 DOI: https://doi.org/10.1016/j.jhazmat.2009.01.027
5. Allouche-Fitoussi D, Breitbart H. The role of Zn in male fertility. Int J Mol Sci. 2020;21:7796. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list] DOI: https://doi.org/10.3390/ijms21207796
6. Alloway B.J. Soil factors associated with Zn deficiency in crops and humans. Environ. Geochem. Health. 2009;31:537–548. doi: 10.1007/s10653-009-9255-4. [DOI] [PubMed] [Google Scholar][Ref list] DOI: https://doi.org/10.1007/s10653-009-9255-4
7. Amin, I., Nazir, R. & Rather, M.A. Evaluation of multi-heavy metal tolerance traits of soil-borne fungi for simultaneous removal of hazardous metals. World J Microbiol Biotechnol 40, 175 (2024). https://doi.org/10.1007/s11274-024-03987-z DOI: https://doi.org/10.1007/s11274-024-03987-z
8. Awadeen, N. A., Eltarahony, M., Zaki, S., Yousef, A., El-Assar, S., & El-Shall, H. (2024). Fungal carbonatogenesis process mediates Zn and chromium removal via statistically optimized carbonic anhydrase enzyme. Microbial Cell Factories, 23(1), 236. DOI: https://doi.org/10.1186/s12934-024-02499-7
9. Ayangbenro AS, Babalola OO. A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health. 2017;14(1):94. doi: 10.3390/ijerph14010094. [DOI] [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.3390/ijerph14010094
10. B. Hemambika, M. Johncy Rani, V. Rajesh Kannan Journal: Journal of Ecology and the Natural Environment, May 2011
11. Bacon J.S.D., Jones D., Farmer V.C. The occurrence of (13)-α-glucan in Cryptococcus, Schizosaccharomyces and Polyporus species, and its hydrolysis by a Streptomyces culture filtrate lysing cell walls of Cryptococcus. BBA. 1968;158:313–315. doi: 10.1016/0304-4165(68)90153-0. [DOI] [PubMed] [Google Scholar][Ref list] DOI: https://doi.org/10.1016/0304-4165(68)90153-0
12. Barquilha, C., Cossich, E., Tavares, C., and Silva, E. (2017). Biosorption of nickel (II) and copper (II) ions in batch and fixed-bed columns by free and immobilized marine algae Sargassum sp. J. Clean Prod 150, 58–64. doi: 10.1016/j.jclepro.2017.02.199 DOI: https://doi.org/10.1016/j.jclepro.2017.02.199
13. Bhattacharya AK, Mandal SK, Das SK (2006) Adsorption of Zn (II) from aqueous solutions by using different adsorbents. Chem Eng J 123:43–51 DOI: https://doi.org/10.1016/j.cej.2006.06.012
14. Brenner B.E., Keyes D. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2024. Metal Fume Fever. [PubMed] [Google Scholar][Ref list]
15. Brown K.H., Wuehler S.E., Peerson J.M. The Importance of Zn in Human Nutrition and Estimation of the Global Prevalence of Zn Deficiency. Food Nutr. Bull. 2001;22:113–125. doi: 10.1177/156482650102200201. [DOI] [Google Scholar][Ref list] DOI: https://doi.org/10.1177/156482650102200201
16. c, J.E. Tiedje, M.T. Brown, Fungal phosphate solubilization and its role in heavy metal bioremediation, Fungal Ecol. 36 (2018) 103–112, https://doi.org/ 10.1016/j.funeco.2018.06.001.
17. C.L. Brierley Bioremediation of metal-contaminated surface and groundwater Geomicrobiology J. (1990) DOI: https://doi.org/10.1080/01490459009377894
18. Cervantes, C. and Gutierrez-Corona, F., Copper resistance mechanisms in bacteria and fungi. FEMS Microbiol. Rev., 1994, 14(2),121–137 DOI: https://doi.org/10.1111/j.1574-6976.1994.tb00083.x
19. Chen, H. & Cutright, T. J. Preliminary evaluation of microbially mediated precipitation of cadmium, chromium, and nickel by Rhizosphere consortium. J. Environ. Eng. 129, 1–4 (2003). DOI: https://doi.org/10.1061/(ASCE)0733-9372(2003)129:1(4)
20. Chumpitazi, B. F. et al. Characteristic and clinical relevance of Candida mannan test in the diagnosis of probable invasive candidiasis. Med Mycol 52, 462–471 (2014). DOI: https://doi.org/10.1093/mmy/myu018
21. Da Silva C.A., Chalouni C., Williams A., Hartl D., Lee C.G., Elias J.A. Chitin is a size-dependent regulator of macrophage TNF and IL-10 production. J Immunol. 2009;182:3573–3582. doi: 10.4049/jimmunol.0802113. [DOI] [PubMed] [Google Scholar][Ref list] DOI: https://doi.org/10.4049/jimmunol.0802113
22. Da Silva C.A., Hartl D., Liu W., Lee C.G., Elias J.A. TLR-2 and IL-17A in chitin-induced macrophage activation and acute inflammation. J Immunol. 2008;181:4279–4286. doi: 10.4049/jimmunol.181.6.4279. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list] DOI: https://doi.org/10.4049/jimmunol.181.6.4279
23. Demey, H., Vincent, T., and Guibal, E. (2018). A novel algal-based sorbent for heavy metal removal. Chem. Eng. J. 332, 582–595. doi: 10.1016/j.cej.2017.09.083 DOI: https://doi.org/10.1016/j.cej.2017.09.083
24. Desaules, A. (2012). Critical evaluation of soil contamination assessment methods for trace metals. The Science of the Total Environment, 426, 120–131. DOI: https://doi.org/10.1016/j.scitotenv.2012.03.035
25. Desaules, A., & Studer, K. (1993). Nationales Bodenbeobachtungsnetz—Messresultate 1985–1991. Schriftenreihe Umwelt, 200, 1–75.
26. Doherty K, Connor M, Cruickshank R. Zn-containing denture adhesive: a potential source of excess Zn resulting in copper deficiency myelopathy. Br Dent J 2011;210:523-5. [PubMed abstract] DOI: https://doi.org/10.1038/sj.bdj.2011.428
27. Duan Y, et al. Nitrogen use efficiency in a wheat–corn cropping system from 15 years of manure and fertilizer applications. Field Crop Res. 2014;157:47–56. doi: 10.1016/j.fcr.2013.12.012. [DOI] [Google Scholar][Ref list] DOI: https://doi.org/10.1016/j.fcr.2013.12.012
28. F. Bosco, C. Mollea, Mycoremediation in soil, in: Environmental Chemistry and Recent Pollution Control Approaches, 2019, p. 173. DOI: https://doi.org/10.5772/intechopen.84777
29. Fallah A, Mohammad-Hasani A, Colagar AH. Zn is an essential element for male fertility: A review of Zn roles in men’s health, germination, sperm quality, and fertilization. J Reprod Infertil. 2018;19:69–81. [PMC free article] [PubMed] [Google Scholar][Ref list]
30. Feldmann H., Branduardi P. Yeast: Molecular and Cell Biology. Wiley-Blackwell; Weinheim, Germany: 2012. p. 464. [Google Scholar][Ref list] DOI: https://doi.org/10.1002/9783527659180
31. Fleet GH. 1991. Cell walls, p 199–277. In Rose AH, Harrison FD (ed). The Yeasts, vol. 4. Academic Press, New York, NY.
32. Fouda, A., Hassan, S.E., Salem, S.S., Shaheen, T.I., 2018. In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zn oxide nanoparticles for medical textile applications. Microb. Pathog. 125, 252–261, 2018. DOI: https://doi.org/10.1016/j.micpath.2018.09.030
33. Fukunaka A, Fujitani Y. Role of Zn homeostasis in the pathogenesis of diabetes and obesity. Int J Mol Sci. 2018;19:476. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list] DOI: https://doi.org/10.3390/ijms19020476
34. Geris, R., Malta, M., Soares, L. A., de Souza Neta, L. C., Pereira, N. S., Soares, M., ... & Pereira, M. D. G. (2024). A review about the mycoremediation of soil impacted by war-like activities: Challenges and gaps. Journal of Fungi, 10(2), 94. DOI: https://doi.org/10.3390/jof10020094
35. Gerwien F., Skrahina V., Kasper L., Hube B., Brunke S. Metals in Fungal Virulence. FEMS Microbiol. Rev. 2017;42 doi: 10.1093/femsre/fux050. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list] DOI: https://doi.org/10.1093/femsre/fux050
36. Gibson R.S., Hess S.Y., Hotz C., Brown K.H. Indicators of Zn status at the population level: A review of the evidence. Br. J. Nutr. 2008;99((Suppl. 3)):S14–S23. doi: 10.1017/S0007114508006818. [DOI] [PubMed] [Google Scholar][Ref list] DOI: https://doi.org/10.1017/S0007114508006818
37. Gold M.H., Mitzel D.L., Segel I.H. Regulation of nigeran accumulation by Aspergillus aculetus. J. Bacteriol. 1973;113:856–862. doi: 10.1128/jb.113.2.856-862.1973. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list] DOI: https://doi.org/10.1128/jb.113.2.856-862.1973
38. Gomes, P.F., Lennartsson, P.R., Persson, NK. et al. Heavy Metal Biosorption by Rhizopus Sp. Biomass Immobilized on Textiles. Water Air Soil Pollut 225, 1834 (2014). https://doi.org/10.1007/s11270-013-1834-4 DOI: https://doi.org/10.1007/s11270-013-1834-4
39. Gow NAR.Latge J.Munro CA. 2017. The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiol Spectr 5:10.1128/microbiolspec.funk-0035-2016. https://doi.org/10.1128/microbiolspec.funk-0035-2016 DOI: https://doi.org/10.1128/microbiolspec.FUNK-0035-2016
40. Gower-Winter SD, Levenson CW. Zn in the central nervous system: from molecules to behavior. BioFactors. 2012;38:186–93. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list] DOI: https://doi.org/10.1002/biof.1012
41. Grün C.H., Hochstenbach F., Humbel B.M. The structure of cell wall α-glucan from fission yreast. Glycobiology. 2005;15:245–257. doi: 10.1093/glycob/cwi002. [DOI] [PubMed] [Google Scholar][Ref list] DOI: https://doi.org/10.1093/glycob/cwi002
42. H.E. Smith, J.E. Tiedje, M.T. Brown, Fungal phosphate solubilization and its role in heavy metal bioremediation, Fungal Ecol. 36 (2018) 103–112, https://doi.org/ 10.1016/j.funeco.2018.06.001
43. Hassan M. U., Chattha M. U., Khan I., Chattha M. B., Aamer M., Nawaz M., et al. (2019). Nickel toxicity in plants: reasons, toxic effects, tolerance mechanisms, and remediation possibilities—a review. Environ. Sci. pollut. Res. 26, 12673–12688. doi: 10.1007/s11356-019-04892-x [DOI] [PubMed] [Google Scholar][Ref list] DOI: https://doi.org/10.1007/s11356-019-04892-x
44. Hemilä H. Zn lozenges and the common cold: a meta-analysis comparing Zn acetate and Zn gluconate, and the role of Zn dosage. JRSM Open 2017;8:2054270417694291. [PubMed abstract] DOI: https://doi.org/10.1177/2054270417694291
45. Herter, U., & Kuelling, D. (2001). Risikoanalyse zur Abfallduengerverwertung in der Landwirtschaft—Teil 1: Grobbeurteilung. Bericht der Eidgenoessische Forschungsanstalt fuer Agraroekologie und Landbau FAL. Zuerich-Recken K. Bosecker Microbial leaching in environmental clean-up programmes Hydrometallurgy (2001)
46. Hochstenbach F., Klis F.M., Van Den Ende H. Identification of a putative alpha-glucan synthase essential for cell wall construction and morphogenesis in fission yeast. PNAS. 1998;95:9161–9166. doi: 10.1073/pnas.95.16.9161. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list] DOI: https://doi.org/10.1073/pnas.95.16.9161
47. Igiri BE, Okoduwa SIR, Idoko GO, Akabuogu EP, Adeyi AO, Ejiogu IK. Toxicity and bioremediation of HMs contaminated ecosystem from tannery wastewater: a review. J Toxicol. 2018;2018:16. doi: 10.1155/2018/2568038. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list] DOI: https://doi.org/10.1155/2018/2568038
48. Institute of Medicine. Food and Nutrition Board. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zn Washington, DC: National Academy Press; 2001.
49. Iram, S., Shabbir, R., Zafar, H., and Javaid, M. (2015). Biosorption and bioaccumulation of copper and lead by heavy metal-resistant fungal isolates. Arab J. Sci. Eng. 40, 1867–1873. doi: 10.1007/s13369-015-1702-1 DOI: https://doi.org/10.1007/s13369-015-1702-1
50. J.L. Burton, S.M. Peterson, E.A. Smith, Degradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium, J. Environ. Chem. Eng. 7 (5) (2019) 4262–4271, https://doi.org/10.1016/j.jece.2019.103352. DOI: https://doi.org/10.1016/j.jece.2019.103352
51. J.W. Niehaus, J.M. Lim, H.S. Kim, Fungal mediated precipitation of Lead from contaminated water: a case study with Aspergillus Niger, Chemosphere 211 (2018) 1–9, https://doi.org/10.1016/j.chemosphere.2018.05.082 DOI: https://doi.org/10.1016/j.chemosphere.2018.05.082
52. K.S. Anjitha, P.P. Sameena, Jos T. Puthur, Functional aspects of plant secondary metabolites in metal stress tolerance and their importance in pharmacology, Plant Stress 2 (2021) 100038. DOI: https://doi.org/10.1016/j.stress.2021.100038
53. Kihara J., Bolo P., Kinyua M., Rurinda J., Piikki K. Micronutrient deficiencies in African soils and the human nutritional nexus: opportunities with staple crops. Environ. Geochem. Health. 2020;42:3015–3033. doi: 10.1007/s10653-019-00499-w. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list] DOI: https://doi.org/10.1007/s10653-019-00499-w
54. King JC, Cousins RJ. Zn. In: Ross AC, Caballero B, Cousins RJ, Tucker KL, Ziegler TR, eds. Modern Nutrition in Health and Disease. 11th ed. Baltimore, MD: Lippincott Williams & Wilkins; 2014:189-205.
55. Klis F.M., Boorsma A., De Groot P.W. Cell wall construction in Saccharomyces cerevisiae. Yeast. 2006;23:185–202. doi: 10.1002/yea.1349. [DOI] [PubMed] [Google Scholar][Ref list] DOI: https://doi.org/10.1002/yea.1349
56. Kumar YP, King P, Prasad VRSK (2006) Zn biosorption on Tectonagrandis L. f. leaves biomass: equilibrium and kinetics. Chem Eng J 124:63–70 DOI: https://doi.org/10.1016/j.cej.2006.07.010
57. Kumar, V., Dwivedi, S.K. Mycoremediation of HMs: processes, mechanisms, and affecting factors. Environ Sci Pollut Res 28, 10375–10412 (2021). https://doi.org/10.1007/s11356-020-11491-8 DOI: https://doi.org/10.1007/s11356-020-11491-8
58. L. Yang, Y. Liang, X. Li, H. Chen, Q. Huang, Chelation of HMs by phosphate-solubilizing Fungi for bioremediation, Ecotoxicol. Environ. Saf. 175 (2019) 1–8, https://doi.org/10.1016/j.ecoenv.2019.02.063. DOI: https://doi.org/10.1016/j.ecoenv.2019.02.063
59. Latge J.P. The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol. 2007;66:279–290. doi: 10.1111/j.1365-2958.2007.05872.x. [DOI] [PubMed] [Google Scholar] DOI: https://doi.org/10.1111/j.1365-2958.2007.05872.x
60. Lesmana SO, Febriana N, Setaredjo N, Sunarso J, Ismadji S (2009) Studies on potential applications of biomass for the separation of HMs from water and wastewater. Biochem Eng J 44:19–41 DOI: https://doi.org/10.1016/j.bej.2008.12.009
61. Li XL, Christie P. Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil. Chemosphere. 2001;42:201–207. doi: 10.1016/s0045-6535(00)00126-0. [DOI] [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/S0045-6535(00)00126-0
62. Li, X. (2023). Unveiling the potential of Aspergillus terreus SJP02 for Zn biosorption in contaminated soils. Scientific Reports, 13, 87749. https://doi.org/10.1038/s41598-025-87749-3
63. Liu Q., Pan Z., Wang E., An L., Sun G. Aqueous metal-air batteries: Fundamentals and applications. Energy Stor. Mater. 2020;27:478–505. [Google Scholar][Ref list] DOI: https://doi.org/10.1016/j.ensm.2019.12.011
64. Liu, S., Xu, X., He, C. et al. Biosorption of Pb2+, Cd2+ and Zn2+ from aqueous solutions by Agrobacterium tumefaciens S12 isolated from acid mine drainage. Sustain Environ Res 34, 27 (2024). https://doi.org/10.1186/s42834-024-00233-x DOI: https://doi.org/10.1186/s42834-024-00233-x
65. Liu, T., Zhang, Y., Liu, Z., Zheng, J., & Wu, W. (2020). Magnetic Zn–Air Batteries: A New Strategy for Rechargeable Power Sources. Advanced Energy Materials, 10(1), 1902542. https://doi.org/10.1002/aenm.201902542
66. M. Urík, S. Čerňanský, J. Ševc, A. Šimonovičová, P. Littera Biovolatilization of arsenic by different fungal strains Water Air Soil Pollut., 186 (2007), pp. 337-342, 10.1007/s11270-007-9489-7 DOI: https://doi.org/10.1007/s11270-007-9489-7
67. MacDonald RS. The Role of Zn in Growth and Cell Proliferation. The Journal of Nutrition 2000;130:1500S-8S. [PubMed abstract] DOI: https://doi.org/10.1093/jn/130.5.1500S
68. Magnin, J.-P., Gondrexon, N., and Willison, J. C. (2014). Zn biosorption by the purple non-sulfur bacterium Rhodobacter capsulatus. Canad J. Microbiol. 60, 829–837. doi: 10.1139/cjm-2014-0231 DOI: https://doi.org/10.1139/cjm-2014-0231
69. Malik, A. Metal bioremediation through growing cells. Environ. Int. 30, 261–278 (2004). DOI: https://doi.org/10.1016/j.envint.2003.08.001
70. Manorma, K., Sharma, S., Sharma, A., and Chauhan, P. K. (2023). Potential of microbes for the remediation of heavy metal–contaminated soil. In Integr. Strategies Bioremediation Environ. Contaminants 2, 113–138. DOI: https://doi.org/10.1016/B978-0-443-14013-6.00001-9
71. Maqbool Q. Iftikhar S. Nazar M. et al.: ‘Green fabricated CuO nanobullets via Olea europaea leaf extract shows auspicious antimicrobial potential’, IET Nanobiotechnol., 2017, 11, (4), pp. 463 –468 [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list] DOI: https://doi.org/10.1049/iet-nbt.2016.0125
72. Maqbool, Q., Wang, X., Nie, Z., & Liu, J. (2017). Zn oxide nanostructures: Synthesis and applications in agriculture. Journal of Nanoscience and Nanotechnology, 17(3), 2231–2242. https://doi.org/10.1166/jnn.2017.12809
73. Maret W., Sandstead H.H. Zn requirements and the risks and benefits of Zn supplementation. J. Trace Elem. Med. Biol. 2006;20:3–18. doi: 10.1016/j.jtemb.2006.01.006. [DOI] [PubMed] [Google Scholar][Ref list] DOI: https://doi.org/10.1016/j.jtemb.2006.01.006
74. Marin ABP, Ortuno JF, Aguilar MI, Meseguer, VF, Saez J, Llorens M (2009) Use of chemical modification to determine the binding of Cd (II), Zn (II) and Cr(III) ions by orange waste. Biochem Eng J. doi:10.1016/j.bej.2008.12.010 DOI: https://doi.org/10.1016/j.bej.2008.12.010
75. Mikulska, M. et al. The use of mannan antigen and anti-mannan antibodies in the diagnosis of invasive candidiasis: recommendations from the Third European Conference on Infections in Leukemia. Crit Care 14, R222 (2010). DOI: https://doi.org/10.1186/cc9365
76. Mirzaei SZ, Somaghian SA, Lashgarian HE, Karkhane M, Cheraghipour K, Marzban A (2021) Phyco-fabrication of bimetallic NPs (Zn–selenium) using aqueous extract of Gracilaria corticata and its biological activity potentials. Ceram Int 47(4):5580–5586. 10.1016/j.ceramint.2020.10.142 [Google Scholar][Ref list] DOI: https://doi.org/10.1016/j.ceramint.2020.10.142
77. Munro C.A., Gow N.A.R. Chitin synthesis in human pathogenic fungi. Med Mycol. 2001;39 S1:41–53. [PubMed] [Google Scholar] DOI: https://doi.org/10.1080/mmy.39.1.41.53
78. Nagraj SK, Naresh S, Srinivas K, George RP, Shetty N, Levenson D, et al. Interventions for the managing taste disturbances. Cochrane Database Syst Rev 2017:CD010470. [PubMed abstract] DOI: https://doi.org/10.1002/14651858.CD010470.pub3
79. Narayanan, M., and Ma, Y. (2023). Mitigation of heavy metal stress in the soil through optimized interaction between plants and microbes. J. Environ. Managet 345, 118732. doi:10.1016/j.jenvman.2023.118732 DOI: https://doi.org/10.1016/j.jenvman.2023.118732
80. Narui, T., Sawada, K., Culberson, C.F., et al., 1999. Pustulan-type polysaccharides as a constant character of the Umbilicariaceae (lichenized Ascomycotina). Briologist 102, 80–85. DOI: https://doi.org/10.2307/3244464
81. Netea, M. G. et al. Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J Clin Invest 116, 1642–1650 (2006). DOI: https://doi.org/10.1172/JCI27114
82. Nie Z. Petukhova A. Kumacheva E.: ‘Properties and emerging applications of self‐assembled structures made from inorganic nanoparticles’, Nat. Nanotechnol., 2010, 5, (1), pp. 15 –25 [DOI] [PubMed] [Google Scholar][Ref list] DOI: https://doi.org/10.1038/nnano.2009.453
83. Nwe, N., Furuike, T., Tamura, H. (2011). Production, Properties and Applications of Fungal Cell Wall Polysaccharides: Chitosan and Glucan. In: Jayakumar, R., Prabaharan, M., Muzzarelli, R. (eds) Chitosan for Biomaterials II. Advances in Polymer Science, vol 244. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2011_124 DOI: https://doi.org/10.1007/12_2011_124
84. P. Jeyakumar, C. Debnath, R. Vijayaraghavan, M. Muthuraj Trends in bioremediation of heavy metal contaminations Environ. Eng. Res., 28 (4) (2023) DOI: https://doi.org/10.4491/eer.2021.631
85. Parida, T., Riyazuddin, S., Kolli, S.K. et al. Phytoremediation of heavy metal(loid)s with integral involvement of the endogenous metal-chelators: present state-of-the-art and future prospect. Discov Environ 2, 139 (2024). https://doi.org/10.1007/s44274-024-00170-x DOI: https://doi.org/10.1007/s44274-024-00170-x
86. Plum LM, Rink L, Haase H. The essential toxin: impact of Zn on human health. Int J Environ Res Public Health 2010;7:1342-65. [PubMed abstract] DOI: https://doi.org/10.3390/ijerph7041342
87. Poo, K.-M., Son, E.-B., Chang, J.-S., Ren, X., Choi, Y.-J., and Chae, K.-J. (2018). Biochars derived from wasted marine macro-algae (Saccharina japonica and Sargassum fusiforme) and their potential for heavy metal removal in aqueous solution. J. Environ. Manag 206, 364–372. doi: 10.1016/j.jenvman.2017.10.056 Povedano-Priego, C., Martı́n-Sánchez, I., Jroundi, F., DOI: https://doi.org/10.1016/j.jenvman.2017.10.056
88. Price, Michael S., John J. Classen, and Gary A. Payne. "Aspergillus niger absorbs copper and Zn from swine wastewater." Bioresource technology 77.1 (2001): 41-49. DOI: https://doi.org/10.1016/S0960-8524(00)00135-8
89. Purchase D, Scholes LN, Revitt DM, Shutes RB. Effects of temperature on metal tolerance and the accumulation of Zn and Pb by metal‐tolerant fungi isolated from urban runoff treatment wetlands. Journal of Applied Microbiology. 2009 Apr 1;106(4):1163-74.
90. Purchase, D., Scholes, L. N., Revitt, D. M., and Shutes, R. B. E. (2009). Effects of temperature on metal tolerance and the accumulation of Zn and Pb by metal-tolerant fungi isolated from urban runoff treatment wetlands. J. Appl. Microbiol. 106, 1163– 1174. doi: 10.1111/jam.2009.106.issue-4 DOI: https://doi.org/10.1111/j.1365-2672.2008.04082.x
91. Qaswar M, et al. Interaction of liming and long-term fertilization increased crop yield and phosphorus use efficiency (PUE) through mediating exchangeable cations in acidic soil under wheat–maize cropping system. Sci. Rep. 2020;10:1–12. doi: 10.1038/s41598-020-76892-8. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list] DOI: https://doi.org/10.1038/s41598-020-76892-8
92. R.C. Wang, H. Chen, C. Chen, H. Wang, Fungal bioremediation of cadmium contaminated soils by Aspergillus Niger, Environ. Sci. Pollut. Res. 24 (18) (2017) 15168–15175, https://doi.org/10.1007/s11356-017-9163-0.
93. Raliya R, et al. Nanofertilizer for precision and sustainable agriculture: Current state and future perspectives. J. Agric. Food Chem. 2017;66:6487–6503. doi: 10.1021/acs.jafc.7b02178. [DOI] [PubMed] [Google Scholar][Ref list] DOI: https://doi.org/10.1021/acs.jafc.7b02178
94. Robinson, M. J. et al. Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J Exp Med 206, 2037–2051 (2009). DOI: https://doi.org/10.1084/jem.20082818
95. Ruiz-Herrera, J., 1992. Fungal cell wall. Structure, Synthesis and Assembly. CRC Press, Boca Raton, FL
96. Ryu M-S, Aydemir TB. Zn. In: Marriott BP, Birt DF, Stallings VA, Yates AA, eds. Present Knowledge in Nutrition. 11th ed. Cambridge, Massachusetts: Wiley-Blackwell; 2020:393-408. DOI: https://doi.org/10.1016/B978-0-323-66162-1.00023-8
97. S.K. Khan, S. Singh, R. Kumar, S.A. Ali, Role of aspergillus Niger in heavy metal bioremediation, J. Environ. Manag. 193 (2017) 201–210, https://doi.org/ 10.1016/j.jenvman.2017.02.014 DOI: https://doi.org/10.1016/j.jenvman.2017.02.035
98. Saijo, S. et al. Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity 32, 681–691 (2010). DOI: https://doi.org/10.1016/j.immuni.2010.05.001
99. Sara L. Baptista, Carlos E. Costa, Joana T. Cunha, Pedro O. Soares, Lucília Domingues, Metabolic engineering of Saccharomyces cerevisiae for the production of top value chemicals from biorefinery carbohydrates, Biotechnology Advances, Volume 47, 2021, 107697, ISSN 0734-9750, https://doi.org/10.1016/j.biotechadv.2021.107697. DOI: https://doi.org/10.1016/j.biotechadv.2021.107697
100. Sara, L. (2021). Advances in fungal biosorption for heavy metal remediation: A review. Environmental Research, 197, 111046. https://doi.org/10.1016/j.envres.2020.111046 DOI: https://doi.org/10.1016/j.envres.2021.111046
101. Seino H, Kawaguchi N, Arai Y, Ozawa N, Hamada K, Nagao N. Investigation of partially myristoylated carboxymethyl chitosan, an amphoteric-amphiphilic chitosan derivative, as a new material for cosmetic and dermal application. J Cosmet Dermatol. 2021 Jul;20(7):2332-2340. doi: 10.1111/jocd.13833. Epub 2020 Dec 13. PMID: 33174289; PMCID: PMC8359406. DOI: https://doi.org/10.1111/jocd.13833
102. Sharma, M., Shilpa, Kaur, M., Sharma, A. K., & Sharma, P. (2023). Influence of different organic manures, biofertilizers and inorganic nutrients on performance of pea (Pisum sativum L.) in North Western Himalayas. Journal of Plant Nutrition, 46(4), 600–617.SpringerLink DOI: https://doi.org/10.1080/01904167.2022.2071735
103. Shazia, I., Uzma, S. G., and Talat, A. (2013). Bioremediation of HMs using isolates of filamentous fungus Aspergillus fumigatus collected from polluted soil of Kasur, Pakistan. Int. Res. J. Biol. Sci. 2, 66–73.
104. Shen, Y., Wiita, E., Nghiem, A. A., Liu, J., Haque, E., & Austin, R. N. (2023). Zn localization and speciation in rice grain under variable soil Zn deficiency. Plant and Soil, 491(1), 605–626. https://doi.org/10.1007/s11104-023-05987-7 DOI: https://doi.org/10.1007/s11104-023-06140-1
105. Shobham, Bhanot, V., Mamta, Verma, S. K., Gupta, S., & Panwar, J. (2025). Unveiling the potential of Aspergillus terreus SJP02 for Zn remediation and its driving mechanism. Scientific Reports, 15(1), 3376. DOI: https://doi.org/10.1038/s41598-025-87749-3
106. Singh KK, Hasan HS, Talat M, Singh VK, Gangwar SK. Removal of Cr(VI) from aqueous solutions using wheat bran. Chem Eng J. 2009;151:113–121. [Google Scholar][Ref list] DOI: https://doi.org/10.1016/j.cej.2009.02.003
107. Singh, P.C., Srivastava, S., Shukla, D., Bist, V., Tripathi, P., Anand, V., Arkvanshi, S.K., Kaur, J., Srivastava, S., 2018. Mycoremediation mechanisms for heavy metal resistance/tolerance in plants. In: Prasad, R. (Ed.), Mycoremediation and Environmental Sustainability, Fungal Biology, pp. 351–381. DOI: https://doi.org/10.1007/978-3-319-77386-5_14
108. Singh, V. K., & Singh, R. (2024). Role of white rot fungi in sustainable remediation of HMs from the contaminated environment. Mycology, 15(4), 585-601. DOI: https://doi.org/10.1080/21501203.2024.2389290
109. Spencer H, Norris C, Williams D. Inhibitory effects of Zn on magnesium balance and magnesium absorption in man. J Am Coll Nutr 1994;13:479-84. [PubMed abstract] DOI: https://doi.org/10.1080/07315724.1994.10718438
110. Sreelatha, L., Ambili, A.L., Sreedevi, S.C. et al. Metallothioneins: an unraveling insight into remediation strategies of plant defense mechanisms. Environ Sci Pollut Res 32, 405–427 (2025). https://doi.org/10.1007/s11356-024-35790-6 DOI: https://doi.org/10.1007/s11356-024-35790-6
111. Sulaymon, A. H., Ebrahim, S. E. & Mohammed-Ridha, M. J. Equilibrium, kinetic, and thermodynamic biosorption of Pb(II), Cr(III), and Cd(II) ions by dead anaerobic biomass from synthetic wastewater. Environ. Sci. Pollut. Res. Int. 20, 175–187 (2013). DOI: https://doi.org/10.1007/s11356-012-0854-8
112. U. Picciotti, V. Araujo Dalbon, A. Ciancio, M. Colagiero, G. Cozzi, L. De Bellis, M. M. Finetti-Sialer, D. Greco, A. Ippolito, N. Lahbib, A.F. Logrieco, “Ectomosphere”: insects and microorganism interactions, Microorganisms 11 (2) (2023) 440. DOI: https://doi.org/10.3390/microorganisms11020440
113. Vidyashree DN, Muthuraju R, Panneerselvam P, Saritha B, Ganeshamurthy AN. Isolation and characterization of Zn solubilizing bacteria from stone quarry dust powder. Int J Agr Sci. 2016;8(56):3078–3085. [Google Scholar]
114. Vilar VJP, Botelho CMS, Boaventura RAR (2007) Chromium and Zn uptake by algae Gelidium and agar extraction algal waste: kinetics and equilibrium. J Hazard Mater 149:643–649 DOI: https://doi.org/10.1016/j.jhazmat.2007.04.023
115. Vogelmeier C., Konig G., Bencze K., Fruhmann G. Pulmonary involvement in Zn fume fever. Chest. 1987;92:946–948. doi: 10.1378/chest.92.5.946. [DOI] [PubMed] [Google Scholar][Ref list] DOI: https://doi.org/10.1378/chest.92.5.946
116. W. Krebs et al. Microbial recovery of metals from solids FEMS Microbiol. Rev. (1997) DOI: https://doi.org/10.1111/j.1574-6976.1997.tb00341.x
117. W.J. Adams et al .Utility of tissue residues for predicting effects of metals on aquatic organisms Integr. Environ. Assess. Manage.(2011) DOI: https://doi.org/10.1002/ieam.108
118. Waleed, M. (2023). Harnessing the potential of Zn oxide nanoparticles and their applications in agriculture. Environmental Advances, 12, 100053. https://doi.org/10.1016/j.envadv.2023.100053
119. Walker CLF, Rudan I, Liu L, Nair H, Theodoratou E, Bhutta ZA, et al. Global burden of childhood pneumonia and diarrhoea. Lancet 2013;381:1405-16. [PubMed abstract] DOI: https://doi.org/10.1016/S0140-6736(13)60222-6
120. Wang X. Yang X. Chen S. et al.: ‘Zn oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis’, Front. Plant Sci., 2016, 6, pp. 1243 –1244 [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list] DOI: https://doi.org/10.3389/fpls.2015.01243
121. Wang, X., Maqbool, Q., Nie, Z., & Liu, J. (2016). Zn oxide nanoparticles enhanced rice yield, quality, and Zn content of edible grain fraction synergistically. Frontiers in Plant Science, 7, 1196. https://doi.org/10.3389/fpls.2016.01196 DOI: https://doi.org/10.3389/fpls.2016.01196
122. Wani PA, Khan MS, Zaidi A. Impact of Zn-tolerant plant growth promoting rhizobacteria on lentil grown in Zn-amended soil. Agron Susta Dev. 2007;28:449–455. [Google Scholar] DOI: https://doi.org/10.1051/agro:2007048
123. Wani, A. B., & Khan, A. (2023). Zn oxide nanoparticles: Opportunities and challenges in agriculture. Frontiers in Plant Science, 14, 1196201. https://doi.org/10.3389/fpls.2023.1196201 DOI: https://doi.org/10.3389/fpls.2023.1196201
124. White JC, Gardea-Torresdey J. Achieving food security through the very small. Nat. Nanotechnol. 2018;13:627–629. doi: 10.1038/s41565-018-0223-y. [DOI] [PubMed] [Google Scholar][Ref list] DOI: https://doi.org/10.1038/s41565-018-0223-y
125. Xingjie, L. (2023). Application of engineered fungal biomass for enhanced biosorption of HMs: Integrating CRISPR and nanotechnology. Scientific Reports, 13, 13678. https://doi.org/10.1038/s41598-023-43633-1
126. Yan A., Wang Y., Tan S. N., Mohd Y. M. L., Ghosh S., Chen Z. (2020). Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci. 11, 359. doi: 10.3389/fpls.2020.00359 [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list] DOI: https://doi.org/10.3389/fpls.2020.00359
127. Yue, Z.-B., Li, Q., C-c, Li, and Wang, J. (2015). Component analysis and heavy metal adsorption ability of extracellular polymeric substances (EPS) from sulfate reducing bacteria. Bioresour Technol. 194, 399–402. doi: 10.1016/ j.biortech.2015.07.042 DOI: https://doi.org/10.1016/j.biortech.2015.07.042
128. Zhang C., Huang H., Deng W., Li T. Genome-Wide Analysis of the Zn(II)₂Cys₆ Zn Cluster-Encoding Gene Family in Tolypocladium guangdongense and Its Light-Induced Expression. Genes. 2019;10:179. doi: 10.3390/genes10030179. [DOI] [PMC free article] [PubMed] [Google Scholar][Ref list] DOI: https://doi.org/10.3390/genes10030179
129. Zhigang Zhao, Qiusheng Xiao, Ning He, Jiejie Kong, Daofeng Zhang, Rungen Li, Qin Shao, Potential application of Curtobacterium sp. GX_31 for efficient biosorption of Cadmium: Isotherm and kinetic evaluation, Environmental Technology & Innovation, Volume 30, 2023, 103122, ISSN 2352-1864, https://doi.org/10.1016/j.eti.2023.103122 DOI: https://doi.org/10.1016/j.eti.2023.103122
Downloads
Published
Issue
Section
License
Copyright (c) 2025 VIDYA - A JOURNAL OF GUJARAT UNIVERSITY

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.