ISOLATION AND CHARACTERIZATION OF CELLULASE – PRODUCING ACTINOMYCETES FROM AGRICULTURAL SOILS OF GUJARAT, INDIA: POTENTIAL FOR LIQUID LIGNOCELLULOSIC WASTE DEGRADATION
DOI:
https://doi.org/10.47413/ycfndr30Abstract
Actinomycetes are known for their ability to produce various extracellular enzymes, including cellulases, which are vital for the degradation of agricultural waste. However, their cellulase production potential has not been extensively studied in soils from Gujarat, India. This study aims to isolate and characterize cellulase-producing actinomycetes from agricultural soils in Gujarat, India, to assess their enzyme production potential. A total of 97 actinomycete strains were isolated from different regions, and their cellulase activity was evaluated using enzyme assays. Total 89 showed significant cellulase activity. Molecular identification using 16S rRNA gene sequencing revealed Pseudonocardia carboxydivorans AA4, Streptomyces griseorubens AA62, and Streptomyces violaceorectus AA74 as the most efficient cellulase producers, with maximum activity reported at 3.22 ± 0.03 U/mL, 3.14 ± 0.02 and 3.06 ± 0.02 U/mL respectively. The cellulase-producing actinomycetes identified in this study could serve as efficient biological agents for the degradation of lignocellulosic waste, with potential applications in sustainable waste management and bioresource utilization.
References
1. Behera BC, Sethi BK, Mishra RR, Dutta SK, Thatoi HN. Microbial cellulases – Diversity & biotechnology with reference to mangrove environment: A review. J Genet Eng Biotechnol. 2017;15(1):197-210. doi:10.1016/J.JGEB.2016.12.001 DOI: https://doi.org/10.1016/j.jgeb.2016.12.001
2. Chaudhari, P. R., Desai, N. H., Chaudhari, P. P., & Rabari, K. V. (2018). Status of chemical properties and available major nutrients in soils of Patan district of Gujarat, India. Crop Research, 53(3and4), 147-153. http://doi.org/10.31830/2454-1761.2018.0001.9 DOI: https://doi.org/10.31830/2454-1761.2018.0001.9
3. Castillo, U., Myers, S., Browne, L., Strobel, G., Hess, W. M., Hanks, J., & Reay, D. (2005). Scanning electron microscopy of some endophytic streptomycetes in snakevine‐Kennedia nigricans. Scanning, 27(6), 305-311. https://doi.org/10.1002/sca.4950270606 DOI: https://doi.org/10.1002/sca.4950270606
4. Al_husnan, L. A., & Alkahtani, M. D. (2016). Molecular Identification of Streptomyces producing antibiotics and their antimicrobial activities. Ann. Agric. Sci, 61(2), 251-255. https://doi.org/10.1016/j.aoas.2016.06.002 DOI: https://doi.org/10.1016/j.aoas.2016.06.002
5. Wei, J., He, L., & Niu, G. (2018). Regulation of antibiotic biosynthesis in actinomycetes: perspectives and challenges. Synth. Syst. Biotechnol., 3(4), 229-235. https://doi.org/10.1016/j.synbio.2018.10.005 DOI: https://doi.org/10.1016/j.synbio.2018.10.005
6. Biswal, T., BadJena, S. K., & Pradhan, D. (2020). Sustainable biomaterials and their applications: A short review. Mat. Today: Proceedings, 30, 274-282. https://doi.org/10.1016/j.matpr.2020.01.437 DOI: https://doi.org/10.1016/j.matpr.2020.01.437
7. Hammes, F., & Verstraete*, W. (2002). Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev. Environ. Sci. Biotechnol., 1, 3-7. DOI: https://doi.org/10.1023/A:1015135629155
8. Crowther, T. W., Van den Hoogen, J., Wan, J., Mayes, M. A., Keiser, A. D., Mo, L., ... & Maynard, D. S. (2019). The global soil community and its influence on biogeochemistry. Science, 365(6455), eaav0550. DOI: 10.1126/science.aav0550 DOI: https://doi.org/10.1126/science.aav0550
9. Bhatla, S. C., A. Lal, M., Kathpalia, R., & Bhatla, S. C. (2018). Plant mineral nutrition. Plant Physiol. Dev. Metab., 37-81. DOI: https://doi.org/10.1007/978-981-13-2023-1_2
10. Manandhar, S., Luitel, S., & Dahal, R. K. (2019). In vitro antimicrobial activity of some medicinal plants against human pathogenic bacteria. J. Trop. Med., 2019. https://doi.org/10.1155/2019/1895340 DOI: https://doi.org/10.1155/2019/1895340
11. Malviya, M. K., Pandey, A., Sharma, A., & Tiwari, S. C. (2013). Characterization and identification of actinomycetes isolated from ‘fired plots’ under shifting cultivation in northeast Himalaya, India. Ann. Microbiol., 63, 561-569. DOI 10.1007/s13213-012-0504-x DOI: https://doi.org/10.1007/s13213-012-0504-x
12. Shivlata, L., & Satyanarayana, T. (2015). Thermophilic and alkaliphilic Actinobacteria: biology and potential applications. Front. Microbiol., 6, 1014. https://doi.org/10.3389/fmicb.2015.01014 DOI: https://doi.org/10.3389/fmicb.2015.01014
13. Pradeep, N. S., & Edison, L. K. (Eds.). (2022). Microbial Beta Glucanases: Molecular Structure, Functions and Applications. Springer Nature. DOI: https://doi.org/10.1007/978-981-19-6466-4
14. Sapkota, A., Thapa, A., Budhathoki, A., Sainju, M., Shrestha, P., & Aryal, S. (2020). Isolation, characterization, and screening of antimicrobial-producing actinomycetes from soil samplesInt. J. Microbiol., 2020. https://doi.org/10.1155/2020/2716584 DOI: https://doi.org/10.1155/2020/2716584
15. Aanal, P., Apoorva, V., Jahanvi, T., Jaimin, P., Pooja, S., Devanshi, V., Rashmilata, C., Vikram, R., Kiransinh, R., Rakesh, P. (2023). Exploration of soil microflora for biosynthesis of cellulases. Advances in Biotechnology, 2023. DOI: 10.15515/abr.0976-4585.S1.19
16. Siva, D., Srivethi, G., Vasan, P. T., Rajesh, D., Alfarhan, A., & Rajagopal, R. (2022). Enhanced cellulase enzyme production by Aspergillus niger using cellulase/iron oxide magnetic nano – composites. J. King Saud Univ. - Sci., 34(1), 101695. https://doi.org/10.1016/j.jksus.2021.101695 DOI: https://doi.org/10.1016/j.jksus.2021.101695
17. Saini, A., Aggarwal, N. K., & Yadav, A. (2017). Isolation and screening of cellulose hydrolyzing bacteria from different ecological niches. Bioeng. Biosci., 5(1), 7-13. DOI: 10.13189/bb.2017.050102 DOI: https://doi.org/10.13189/bb.2017.050102
18. Zhu, H., Sandiford, S. K., & van Wezel, G. P. (2014). Triggers and cues that activate antibiotic production by actinomycetes. J. Ind. Microbiol. Biotechnol., 41(2), 371-386. https://doi.org/10.1007/s10295-013-1309-z DOI: https://doi.org/10.1007/s10295-013-1309-z
19. Busti, E., Monciardini, P., Cavaletti, L., Bamonte, R., Lazzarini, A., Sosio, M., & Donadio, S. (2006). Antibiotic-producing ability by representatives of a newly discovered lineage of actinomycetes. Microbiology, 152(3), 675-683. http://doi.org/ 10.1099/mic.0.28335-0 DOI: https://doi.org/10.1099/mic.0.28335-0
20. Kumar, S., Solanki, D. S., Parihar, K., Tak, A., Gehlot, P., Pathak, R., & Singh, S. K. (2021). Actinomycetes isolates of arid zone of Indian Thar Desert and efficacy of their bioactive compounds against human pathogenic bacteria. Biol. Futura., 72(4), 431-440. https://doi.org/10.1007/s42977-021-00073-5 DOI: https://doi.org/10.1007/s42977-021-00073-5
21. Saravanakumar, A., Rajkumar, M., Serebiah, J. S., & Thivakaran, G. A. (2008). Seasonal variations in physico-chemical characteristics of water, sediment and soil texture in arid zone mangroves of Kachchh-Gujarat. J. Environ. Biol, 29(5), 725-732.s
22. THAKER, P. N., BRAHMBHATT, N., & SHAH, K. D. (2023). Assessment of physico-chemical properties of soil in selected areas of Khambhat taluka, Gujarat. Ann. Plant Soil Res., 25 (1), 187-192. https://doi.org/10.47815/apsr.2023.10255 DOI: https://doi.org/10.47815/apsr.2023.10255
23. Kumar, N., Singh, R. K., Mishra, S. K., Singh, A. K., & Pachouri, U. C. (2010). Isolation and screening of soil Actinomycetes as source of antibiotics active against bacteria. Int. J. Microbiol. Res., 2(2), 12. DOI: https://doi.org/10.9735/0975-5276.2.2.12-16
24. Clarridge III, J. E. (2004). Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clinical microbiology reviews, 17(4), 840-862. https://doi.org/10.1128/cmr.17.4.840-862.2004 DOI: https://doi.org/10.1128/CMR.17.4.840-862.2004
25. Darby, A. C., Chandler, S. M., Welburn, S. C., & Douglas, A. E. (2005). Aphid-symbiotic bacteria cultured in insect cell lines. Applied and environmental microbiology, 71(8), 4833-4839. https://doi.org/10.1128/AEM.71.8.4833-4839.2005 DOI: https://doi.org/10.1128/AEM.71.8.4833-4839.2005
26. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of molecular biology, 215(3), 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2 DOI: https://doi.org/10.1016/S0022-2836(05)80360-2
27. Shirling, E. T., & Gottlieb, D. (1966). Methods for characterization of Streptomyces species. International journal of systematic bacteriology, 16(3), 313-340. DOI: https://doi.org/10.1099/00207713-16-3-313
28. Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120 DOI: https://doi.org/10.1093/molbev/msab120
Downloads
Published
Issue
Section
License
Copyright (c) 2025 VIDYA - A JOURNAL OF GUJARAT UNIVERSITY

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.