LONG-TERM DECLINE IN PICOPHYTOPLANKTON ABUNDANCE AND CARBON BIOMASS IN THE ARABIAN SEA: EVIDENCE FROM 1995 AND 2019

Authors

  • Sipai Nazirahmed Department of Microbiology and Biotechnology, Gujarat University https://orcid.org/0000-0003-0399-5763
  • Arvind Singh Geosciences Division, Physical Research Laboratory (PRL)
  • Rakeshkumar Panchal Department of Microbiology and Biotechnology, School of Sciences, Gujarat University

DOI:

https://doi.org/10.47413/cng16e70

Abstract

Picophytoplankton play a critical role in marine primary production, particularly in oligotrophic regions such as the Arabian Sea. In this study, we assessed changes in the picophytoplankton abundance and carbon biomass of Prochlorococcus and Synechococcus between 1995 (US-Joint Global Ocean Flux Study-US-JGOFS) and 2019, revealing a significant decline in both groups. Picophytoplankton abundance declined by 23% for Prochlorococcus and 37% for Synechococcus in the basin. Estimated picophytoplankton carbon stocks in the Arabian Sea decreased from 8.8 Tg C (range: 4.0–20.16 Tg C) in 1995 to 2.8 Tg C (range: 0.81–13.75 Tg C) in 2019. These declines are consistent with broader reductions in chlorophyll a concentrations and net primary production, likely driven by increased ocean stratification and reduced nutrient supply under warming conditions. While uncertainties remain regarding long-term chlorophyll a trend, recent studies support the conclusion of declining productivity in oligotrophic oceans. Our findings highlight the vulnerability of picophytoplankton communities to climate-driven changes and suggest significant implications for carbon cycling and food web dynamics in the Indian Ocean.

References

1. Agawin, N. S. R., Duarte, C. M., & Agustí, S. (2000). Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnology and Oceanography, 45(3), 591–600. https://doi.org/10.4319/lo.2000.45.3.0591

2. Agustí, S., & Llabrés, M. (2007). Solar Radiation-induced Mortality of Marine Pico-phytoplankton in the Oligotrophic Ocean. Photochemistry and Photobiology, 83(4), 793–801. https://doi.org/10.1111/j.1751-1097.2007.00144.x

3. Agusti, S., Lubián, L. M., Moreno-Ostos, E., Estrada, M., & Duarte, C. M. (2019). Projected Changes in Photosynthetic Picoplankton in a Warmer Subtropical Ocean. Frontiers in Marine Science, Volume 5-2018. https://doi.org/10.3389/fmars.2018.00506

4. Behrenfeld, M. J., O’Malley, R. T., Boss, E. S., Westberry, T. K., Graff, J. R., Halsey, K. H., Milligan, A. J., Siegel, D. A., & Brown, M. B. (2016). Revaluating ocean warming impacts on global phytoplankton. Nature Climate Change, 6(3), 323–330.

5. Behrenfeld, M. J., O’Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento, J. L., Feldman, G. C., Milligan, A. J., Falkowski, P. G., Letelier, R. M., & Boss, E. S. (2006). Climate-driven trends in contemporary ocean productivity. Nature, 444(7120), 752–755.

6. Bemal, S., Anil, A. C., Shankar, D., Remya, R., & Roy, R. (2018). Picophytoplankton variability: Influence of winter convective mixing and advection in the northeastern Arabian Sea. Journal of Marine Systems, 180, 37–48. https://doi.org/10.1016/j.jmarsys.2017.12.007

7. Boyce, D. G., Lewis, M. R., & Worm, B. (2010). Global phytoplankton decline over the past century. Nature, 466(7306), 591–596.

8. Campbell, L., Landry, M. R., Constantinou, J., Nolla, H. A., Brown, S. L., Liu, H., & Caron, D. A. (1998). Response of microbial community structure to environmental forcing in the Arabian Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 45(10), 2301–2325. https://doi.org/10.1016/S0967-0645(98)00072-1

9. Campbell, L., Liu, H., Nolla, H. A., & Vaulot, D. (1997). Annual variability of phytoplankton and bacteria in the subtropical North Pacific Ocean at Station ALOHA during the 1991–1994 ENSO event. Deep Sea Research Part I: Oceanographic Research Papers, 44(2), 167–192. https://doi.org/10.1016/S0967-0637(96)00102-1

10. Campbell, L., Nolla, H. A., & Vaulot, D. (1994). The importance of Prochlorococcus to community structure in the central North Pacific Ocean. Limnology and Oceanography, 39(4), 954–961. https://doi.org/10.4319/lo.1994.39.4.0954

11. Chowdhury, M., Biswas, H., Mitra, A., Silori, S., Sharma, D., Bandyopadhyay, D., Shaik, A. U. R., Fernandes, V., & Narvekar, J. (2021). Southwest monsoon-driven changes in the phytoplankton community structure in the central Arabian Sea (2017–2018): After two decades of JGOFS. Progress in Oceanography, 197, 102654. https://doi.org/10.1016/j.pocean.2021.102654

12. Duarte, C. M. (2015). Seafaring in the 21St Century: The Malaspina 2010 Circumnavigation Expedition. Limnology and Oceanography Bulletin, 24(1), 11–14. https://doi.org/10.1002/lob.10008

13. Dutkiewicz, S., Morris, J. J., Follows, M. J., Scott, J., Levitan, O., Dyhrman, S. T., & Berman-Frank, I. (2015). Impact of ocean acidification on the structure of future phytoplankton communities. Nature Climate Change, 5(11), 1002–1006.

14. E.U. Copernicus Marine Service Information (CMEMS). (2025). Sea surface temperature (SST). Marine Data Store (MDS). https://doi.org/10.48670/moi-00052 (Accessed on 06/05/2025)

15. Flombaum, P., Gallegos, J. L., Gordillo, R. A., Rincón, J., Zabala, L. L., Jiao, N., Karl, D. M., Li, W. K. W., Lomas, M. W., Veneziano, D., Vera, C. S., Vrugt, J. A., & Martiny, A. C. (2013). Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci U S A, 110(24), 9824–9829. https://doi.org/10.1073/pnas.1307701110

16. Flombaum, P., & Martiny, A. C. (2021). Diverse but uncertain responses of picophytoplankton lineages to future climate change. Limnology and Oceanography, 66(12), 4171–4181. https://doi.org/10.1002/lno.11951

17. Fu, F.-X., Warner, M. E., Zhang, Y., Feng, Y., & Hutchins, D. A. (2007). EFFECTS OF INCREASED TEMPERATURE AND CO2 ON PHOTOSYNTHESIS, GROWTH, AND ELEMENTAL RATIOS IN MARINE SYNECHOCOCCUS AND PROCHLOROCOCCUS (CYANOBACTERIA). Journal of Phycology, 43(3), 485–496. https://doi.org/10.1111/j.1529-8817.2007.00355.x

18. Graff JR, Westberry TK, Milligan AJ, Brown MB, DallOlmo G, Reifel KM, & Behrenfeld MJ. (2016). Photoacclimation of natural phytoplankton communities. Mar Ecol Prog Ser, 542, 51–62.

19. Guinehut, S., Dhomps, A.-L., Larnicol, G., & Le Traon, P.-Y. (2012). High resolution 3-D temperature and salinity fields derived from in situ and satellite observations. Ocean Science, 8(5), 845–857. https://doi.org/10.5194/os-8-845-2012

20. JGOFS Arabian Sea Process Study Program. (2002). Data from the Joint Global Ocean Flux Study (JGOFS) Arabian Sea Process Study Program, 1992 to 1997 [Bacteria-Bacterial density]. NOAA National Centers for Environmental Information. https://www.ncei.noaa.gov/archive/accession/JGOFS-ArabianSea. Accessed on 5/5/2025

21. Kassambara, A. (2023). ggpubr: “ggplot2” Based Publication Ready Plots. https://rpkgs.datanovia.com/ggpubr/

22. Marie, D., Simon, N., Guillou, L., Partensky, F., & Vaulot, D. (2000). Flow Cytometry Analysis of Marine Picoplankton. In R. A. Diamond & S. Demaggio (Eds.), In Living Color: Protocols in Flow Cytometry and Cell Sorting (pp. 421–454). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-57049-0_34

23. Mulet, S., Rio, M.-H., Mignot, A., Guinehut, S., & Morrow, R. (2012). A new estimate of the global 3D geostrophic ocean circulation based on satellite data and in-situ measurements. Deep Sea Research Part II: Topical Studies in Oceanography, 77–80, 70–81. https://doi.org/10.1016/j.dsr2.2012.04.012

24. Partensky, F., Blanchot, J., & Vaulot, D. (1999). Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: A review. https://api.semanticscholar.org/CorpusID:54904912

25. Phillips, H. E., Tandon, A., Furue, R., Hood, R., Ummenhofer, C. C., Benthuysen, J. A., Menezes, V., Hu, S., Webber, B., Sanchez-Franks, A., Cherian, D., Shroyer, E., Feng, M., Wijesekera, H., Chatterjee, A., Yu, L., Hermes, J., Murtugudde, R., Tozuka, T., … Wiggert, J. (2021). Progress in understanding of Indian Ocean circulation, variability, air–sea exchange, and impacts on biogeochemistry. Ocean Science, 17(6), 1677–1751. https://doi.org/10.5194/os-17-1677-2021

26. Roxy, M. K., Gnanaseelan, C., Parekh, A., Chowdary, J. S., Singh, S., Modi, A., Kakatkar, R., Mohapatra, S., Dhara, C., Shenoi, S. C., & Rajeevan, M. (2020). Indian Ocean Warming. In R. Krishnan, J. Sanjay, C. Gnanaseelan, M. Mujumdar, A. Kulkarni, & S. Chakraborty (Eds.), Assessment of Climate Change over the Indian Region: A Report of the Ministry of Earth Sciences (MoES), Government of India (pp. 191–206). Springer Singapore. https://doi.org/10.1007/978-981-15-4327-2_10

27. Roxy, M. K., Modi, A., Murtugudde, R., Valsala, V., Panickal, S., Prasanna Kumar, S., Ravichandran, M., Vichi, M., & Lévy, M. (2016). A reduction in marine primary productivity driven by rapid warming over the tropical Indian Ocean. Geophysical Research Letters, 43(2), 826–833. https://doi.org/10.1002/2015GL066979

28. Roxy, M. K., Ritika, K., Terray, P., & Masson, S. (2014). The Curious Case of Indian Ocean Warming. Journal of Climate, 27(22), 8501–8509. https://doi.org/10.1175/JCLI-D-14-00471.1

29. Rykaczewski, R. R., & Dunne, J. P. (2011). A measured look at ocean chlorophyll trends. Nature, 472(7342), E5–E6.

30. Saxena, H., Sahoo, D., Nazirahmed, S., Rai, D. K., Khan, M. A., Sharma, N., Kumar, S., & Singh, A. (2022). Contribution of Carbon Fixation Toward Carbon Sink in the Ocean Twilight Zone. Geophysical Research Letters, 49(18), e2022GL099044. https://doi.org/10.1029/2022GL099044

31. Signorini, S. R., Franz, B. A., & McClain, C. R. (2015). Chlorophyll variability in the oligotrophic gyres: Mechanisms, seasonality and trends. Frontiers in Marine Science, Volume 2-2015. https://doi.org/10.3389/fmars.2015.00001

32. Singh, A., Gandhi, N., & Ramesh, R. (2019). Surplus supply of bioavailable nitrogen through N2 fixation to primary producers in the eastern Arabian Sea during autumn. Continental Shelf Research, 181, 103–110. https://doi.org/10.1016/j.csr.2019.05.012

33. Singh, A., & Ramesh, R. (2015). Environmental controls on new and primary production in the northern Indian Ocean. Progress in Oceanography, 131, 138–145. https://doi.org/10.1016/j.pocean.2014.12.006

34. Sreeush, M. G., Rajendran, S., Valsala, V., Pentakota, S., Prasad, K. V. S. R., & Murtugudde, R. (2019). Variability, trend and controlling factors of Ocean acidification over Western Arabian Sea upwelling region. Marine Chemistry, 209, 14–24. https://doi.org/10.1016/j.marchem.2018.12.002

35. Strathmann, R. R. (1967). ESTIMATING THE ORGANIC CARBON CONTENT OF PHYTOPLANKTON FROM CELL VOLUME OR PLASMA VOLUME. Limnology and Oceanography, 12(3), 411–418. https://doi.org/10.4319/lo.1967.12.3.0411

36. Taucher, J., & Oschlies, A. (2011). Can we predict the direction of marine primary production change under global warming? Geophysical Research Letters, 38(2). https://doi.org/10.1029/2010GL045934

37. Veldhuis, M. J. W., Kraay, G. W., Bleijswijk, J. D. L. V., & Baars, M. A. (1997). Seasonal and spatial variability in phytoplankton biomass, productivity and growth in the northwestern Indian Ocean: The southwest and northeast monsoon, 1992–1993. Deep Sea Research Part I: Oceanographic Research Papers, 44(3), 425–449. https://doi.org/10.1016/S0967-0637(96)00116-1

Downloads

Published

30-06-2025

Issue

Section

Articles

How to Cite

LONG-TERM DECLINE IN PICOPHYTOPLANKTON ABUNDANCE AND CARBON BIOMASS IN THE ARABIAN SEA: EVIDENCE FROM 1995 AND 2019. (2025). VIDYA - A JOURNAL OF GUJARAT UNIVERSITY, 4(1), 202-211. https://doi.org/10.47413/cng16e70

Most read articles by the same author(s)