PRELIMINARY SCREENING, QUANTITATIVE ANALYSIS, ANTIOXIDANT AND ANTIMICROBIAL ACTIVITIES OF MUSHROOMS ALONG WITH FTIR ANALYSIS

Authors

  • Hiral Chaudhary Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India,380009.
  • Nainesh Modi Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University
  • Rakesh Rawal Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India, 380009.

DOI:

https://doi.org/10.47413/vidya.v2i2.245

Keywords:

Keywords: Mycochemical screening, antioxidant activity, antimicrobial activity, FTIR

Abstract

The present study mainly focused on identifying the efficiency of polypore mushrooms and exploring their medicinal value. In this experiment, the antioxidant and antimicrobial potentials of three mushrooms Trametes pubescens (Schumach.) Pilat, Spongipellis pachyodon (Pers.) Kotl. & Pouzar and Inonotus hispidus (Bull.) P. Karst. were tested along with their qualitative and quantitative analysis. The antioxidant and antimicrobial activities of methanolic crude extracts were determined using the Frap assay (ferric reducing antioxidant power) and agar well diffusion method respectively. The methanolic extracts of all three mushrooms revealed the presence of alkaloids, carbohydrates, proteins, phenolics, flavonoids, saponins, terpenoids, and cardiac glycosides. The antioxidant activity of Trametes pubescens, Spongipellis pachyodon, and Inonotus hispidus found to be 19.83±0.5, 38.5±0.8 and 39.5± 0.9 mg Fe (Ⅱ)/g of sample, respectively. The antimicrobial activity was tested against Staphylococcus aureus, Bacillus subtilis and Psuedomonas species. The inhibition zone was measured, in which all three species show maximum inhibition against Staphylococcus aureus. The correlation coefficient showed a positive relationship between total flavonoid content and antioxidant activity (r = 0.9). The Fourier Transformed infrared (FTIR) profiling indicates the presence of functional groups in these species for its pharmaceutical activities.

References

Anke, T.; Giannetti, B. M.; Steglich, W. Z. Naturforsch. 1982, 37c,1-4.

Barron, E. S., Sthultz, C., Hurley, D., & Pringle, A. (2015). Names matter: Interdisciplinary research on taxonomy and nomenclature for ecosystem management. Progress in Physical Geography, 39(5), 640-660.

Bekiaris, G., Tagkouli, D., Koutrotsios, G., Kalogeropoulos, N., & Zervakis, G. I. (2020). Pleurotus mushrooms content in glucans and ergosterol assessed by ATR-FTIR spectroscopy and multivariate analysis. Foods, 9(4), 535.

Bhagavathy, S., Sumathi, P., & Bell, I. J. S. (2011). Green algae Chlorococcum humicola-a new source of bioactive compounds with antimicrobial activity. Asian Pacific Journal of Tropical Biomedicine, 1(1), S1-S7.

Chang, S. T. (1999). World production of cultivated edible and medicinal mushrooms in 1997 with emphasis on Lentinus edodes (Berk.) Sing, in China. International Journal of Medicinal Mushrooms, 1(4).

Comandini, O., & Rinaldi, A. C. (2020). Ethnomycology in Europe: The past, the present, and the future. In Mushrooms, humans and nature in a changing world (pp. 341-364). Springer, Cham.

Deyrup ST, Gloer JB, O’Donnell K, Wicklow DT (2007) Kolokosides AD: triterpenoid glycosides from a Hawaiian isolate of Xylaria sp. J Nat Prod 70(3):378–38

Donadio, S., Carrano, L., Brandi, L., Serina, S., Soffientini, A., Raimondi, E., ... & Gualerzi, C. O. (2002). Targets and assays for discovering novel antibacterial agents. Journal of biotechnology, 99(3), 175-185.

Gao Y, Tang W, Gao H, Chan E, Lan J, Li X, et al. Antimicrobial activity of the medicinal mushroom Ganoderma. Food Reviews International. 2005; 21: 211-29.

Gao Y, Tang W, Gao H, Chan E, Lan J, Li X, et al. Antimicrobial activity of the medicinal mushroom Ganoderma. Food Reviews International. 2005; 21: 211-29.

Gilbertson RL, Ryvarden L. North American polypores. Fungiflora. 1986;1:1–436

Gilbertson, R. L.; Ryvarden, L. North American Polypores; Fungiflora: Oslo, 1986 and 1987; Vols. 1 and 2.

Heleno, S.A.; Ferreira, R.C.; Antonio, A.L.; Queiroz, M.J.R.P.; Barros, L.; Ferreira, I.C.F.R. Nutritional value, bioactive compounds and antioxidant properties of three edible mushrooms from Poland. Food Biosci. 2015, 11, 48–55. [CrossRef]

Kumaran RS, Muthumary J, Hur BK (2008) Taxol from Phyllosticta citricarpa, a leaf spot fungus of the angiosperm Citrus medica. J Biosci Bioeng 106(1):103–106.

Kuo,M.(2010,March). Trametespubescens. Retrievedfrom the MushroomExpert.Com Website: http://www.mushroomexpert.com/trametes_pubescens.html

Mahesar, S.A.; Lucarini, M.; Durazzo, A.; Santini, A.; Lampe, A.I.; Kiefer, J. Application of Infrared Spectroscopy for Functional Compounds Evaluation in Olive Oil: A Current Snapshot. J. Spectrosc. 2019, 2019, 1–11. [CrossRef]

Mattill, H. A. (1947). Antioxidants. Annual review of biochemistry, 16(1), 177-192.

Nagaraj, K., Mallikarjun, N., Naika, R., & Venugopal, T. M. (2013). Phytochemical analysis and in vitro antimicrobial potential of Ganoderma applanatum (Pers.) Pat. of Shivamogga district-Karnataka, India. Int. J. Pharm. Sci. Rev. Res, 23(2), 36-41

Quereshi S, Pandey AK, & Sandhu SS. Evaluation of antibacterial activity of different Ganoderma lucidum extracts. J Sci Res. 2010;3:9‒13.

Silva S, Martins S, Karmali A, Rosa E (2012) Production, purification and characterisation of polysaccharides from Pleurotus ostreatus with antitumour activity. J Sci Food Agric 92(9):1826–1832

Stamets P. Growing gourmet and medicinal mushroom. Berkeley Ten speed press. 2000; 45-9.

Stamets, P. HerbalGram 2002, 54, 28-33.

Turkoglu A, Duru ME, Mercan N, Kivrak I, Gezer K (2007) Antioxidant and antimicrobial activities of Laetiporus sulphureus (Bull.) Murrill. Food Chem 101(1):267– 273.

Turkoglu A, Duru ME, Mercan N, Kivrak I, Gezer K. Antioxidant and Antimicrobial activities of Laetiporus sulphureus (Bull) Murrill. Food chemistry. 2007; 101: 267- 73.

Wasser, S. P. HerbalGram 2002, 56, 29-33

Yang, L.; Zhang, L.M. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources. Carbohydr. Polym. 2009, 76, 349–361. [CrossRef]

Zan, L. F., Qin, J. C., Zhang, Y. M., Yao, Y. H., Bao, H. Y., & Li, X. (2011). Antioxidant hispidin derivatives from medicinal mushroom Inonotus hispidus. Chemical and Pharmaceutical Bulletin, 59(6), 770-772.

Downloads

Published

28-09-2023

How to Cite

Chaudhary, H., Modi, N., & Rawal, R. (2023). PRELIMINARY SCREENING, QUANTITATIVE ANALYSIS, ANTIOXIDANT AND ANTIMICROBIAL ACTIVITIES OF MUSHROOMS ALONG WITH FTIR ANALYSIS. VIDYA - A JOURNAL OF GUJARAT UNIVERSITY, 2(2), 242–250. https://doi.org/10.47413/vidya.v2i2.245

Issue

Section

Articles